Advertisement

CardioVascular and Interventional Radiology

, Volume 42, Issue 3, pp 413–425 | Cite as

Radioembolization with 90Y Resin Microspheres of Neuroendocrine Liver Metastases: International Multicenter Study on Efficacy and Toxicity

  • A. J. A. T. BraatEmail author
  • S. C. Kappadath
  • H. Ahmadzadehfar
  • C. L. Stothers
  • A. Frilling
  • C. M. Deroose
  • P. Flamen
  • D. B. Brown
  • D. Y. Sze
  • A. Mahvash
  • M. G. E. H. Lam
Clinical Investigation Interventional Oncology
Part of the following topical collections:
  1. Interventional Oncology

Abstract

Purpose

Radioembolization of liver metastases of neuroendocrine neoplasms (NEN) has shown promising results; however, the current literature is of limited quality. A large international, multicentre retrospective study was designed to address several shortcomings of the current literature.

Materials

244 NEN patients with different NEN grades were included.

Methods

Primary outcome parameters were radiologic response 3 and 6 months after treatment according to RECIST 1.1 and mRECIST. Secondary outcome parameters included clinical response, clinical and biochemical toxicities.

Results

Radioembolization resulted in CR in 2%, PR in 14%, SD in 75% and PD 9% according to RECIST 1.1 and in CR in 8%, PR in 35%, SD in 48% and PD in 9% according to mRECIST. Objective response rates improved over time in 20% and 26% according to RECIST 1.1. and mRECIST, respectively. Most common new grade 3–4 biochemical toxicity was lymphocytopenia (6.7%). No unexpected clinical toxicities occurred. Radioembolization-specific complications occurred in < 4%. In symptomatic patients, improvement and resolution of symptoms occurred in 44% and 34%, respectively. Median overall survival from first radioembolization was 3.7, 2.7 and 0.7 years for G1, G2 and G3, respectively. Objective response is independent of NEN grade or primary tumour origin. Significant prognostic factors for survival were NEN grade/Ki67 index, ≥ 75% intrahepatic tumour load, the presence of extrahepatic disease and disease control rate according to RECIST 1.1.

Conclusion

Safety and efficacy of radioembolization in NEN patients was confirmed with a high disease control rate of 91% in progressive patients and alleviation of NEN-related symptoms in 79% of symptomatic patients.

Level of evidence

4.

Keywords

Radioembolization SIRT NEN NET Neuroendocrine tumor 

Notes

Funding

Travel expenses and accommodations of AJATB were partially covered by Sirtex Medical Europe, producer of SIR-spheres. Remaining travel expenses were granted by the Girard de Mielet van Coehoorn Foundation (Grant of the Board of Directors UMC Utrecht, the Netherlands). Both parties have no access to the data and have not been involved in data analysis or in the writing of the manuscript.

Compliance with Ethical Standards

Conflict of interest

C.M.D. has acted as a consultant for Sirtex, Bayer Healthcare and Ipsen. A.F. receives research funding from Ipsen, Novartis and Sirtex Medical. D.B.B is a consultant for BTG, receives research funding from Sirtex and has served on a speaker’s bureau for Boston Scientific. D.Y.S. has acted as consultant for BTG, Boston Scientific, Amgen, EmbolX and Viralytics. M.G.E.H.L. has acted as a consultant for BTG, Sirtex, Mirada and Bayer Healthcare. All other authors have no conflicts of interest to declare.

Supplementary material

270_2018_2148_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)

References

  1. 1.
    Heetfeld M, Chougnet CN, Olsen IH, et al. Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer. 2015;22(4):657–64.  https://doi.org/10.1530/ERC-15-0119.CrossRefGoogle Scholar
  2. 2.
    Rindi G, Petrone G, Inzani F. The 2010 WHO classification of digestive neuroendocrine neoplasms: a critical appraisal four years after its introduction. Endcr Pathol. 2014;25(2):186–92.  https://doi.org/10.1007/s12022-014-9313-z.CrossRefGoogle Scholar
  3. 3.
    Pavel M, Baudin E, Couvelard A, et al. ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95(2):157–76.  https://doi.org/10.1159/000335597.CrossRefGoogle Scholar
  4. 4.
    Lawrence B, Gustafsson BI, Chan A, et al. The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin North Am. 2011;40(1):1–18.  https://doi.org/10.1016/j.ecl.2010.12.005.CrossRefGoogle Scholar
  5. 5.
    Frilling A, Li J, Malamutmann E, Schmid KW, et al. Treatment of liver metastases from neuroendocrine tumours in relation to the extent of hepatic disease. Br J Surg. 2009;96(2):175–84.  https://doi.org/10.1002/bjs.6468.CrossRefGoogle Scholar
  6. 6.
    Strosberg JR, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Eng J Med. 2017;376(2):125–35.  https://doi.org/10.1056/NEJMoa1607427.CrossRefGoogle Scholar
  7. 7.
    Yao JC, Fazio N, Singh S, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet. 2016;387:968–77.  https://doi.org/10.1016/S0140-6736(15)00817-X.CrossRefGoogle Scholar
  8. 8.
    Caplin ME, Pavel M, Ćwikła JB, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Eng J Med. 2014;371(3):224–33.  https://doi.org/10.1056/NEJMoa1316158.CrossRefGoogle Scholar
  9. 9.
    Raymond E, Dahan L, Raoul JL, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Eng J Med. 2011;364(6):501–13.  https://doi.org/10.1056/NEJMoa1003825.CrossRefGoogle Scholar
  10. 10.
    Frilling A, Modlin IM, Kidd M, et al. Recommendations for management of patients with neuroendocrine liver metastases. Lancet Oncol. 2014;15(1):e8–21.  https://doi.org/10.1016/S1470-2045(13)70362-0.CrossRefGoogle Scholar
  11. 11.
    Devcic Z, Rosenberg J, Braat AJAT, et al. The efficacy of hepatic 90Y resin radioembolization for metastatic neuroendocrine tumors: a meta-analysis. J Nucl Med. 2014;55(9):1404–10.  https://doi.org/10.2967/jnumed.113.135855.CrossRefGoogle Scholar
  12. 12.
    Kennedy AS, Bester L, Salem R, et al. Role of hepatic intra-arterial therapies in metastatic neuroendocrine tumours (NET): guidelines from the NET-Liver-Metastases Consensus Conference. HBP (Oxford). 2015;17(1):29–37.  https://doi.org/10.1111/hpb.12326.CrossRefGoogle Scholar
  13. 13.
    Lam MGEHLJ, Iagaru AH, Goris ML, Sze DY. Safety of repeated yttrium-90 radioembolization. Cardiovasc Intervent Radiol. 2013;36(5):1320–8.  https://doi.org/10.1007/s00270-013-0547-9.CrossRefGoogle Scholar
  14. 14.
    Salem R, Lewandowski RJ, Gates VL, et al. Research reporting standards for radioembolization of hepatic malignancies. J Vasc Interv Radiol. 2011;22(3):265–78.  https://doi.org/10.1016/j.jvir.2010.10.029.CrossRefGoogle Scholar
  15. 15.
    Response Evaluation Criteria In Solid Tumors. www.recist.com. Accessed March 2016.
  16. 16.
    Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30(1):52–60.CrossRefGoogle Scholar
  17. 17.
    USA NCI. Common terminology criteria in adverse events, version 4.03 (CTCAE v4.03). NIH. 2010. http://www.hrc.govt.nz/sites/default/files/CTCAE%20manual%20-%20DMCC.pdf. Accessed March 2016.
  18. 18.
    Ludwig JM, Ambinder EM, Ghodadra 3, et al. Lung shunt fraction prior to yttrium-90 radioembolization predicts survival in patients with neuroendocrine liver metastases: single-center prospective analysis. Cardiovasc Intervent Radiol. 2016;39(7):1007–14.  https://doi.org/10.1007/s00270-016-1323-4.
  19. 19.
    Sommer WH, Ceelen F, Garcia-Albeniz X, et al. Defining predictors for long progression-free survival after radioembolisation of hepatic metastases of neuroendocrine origin. Eur Radiol. 2013;23(11):3094–103.  https://doi.org/10.1007/s00330-013-2925-8.CrossRefGoogle Scholar
  20. 20.
    Peker A, Çiçek O, Soydal Ç, et al. Radioembolization with yttrium-90 resin microspheres for neuroendocrine tumor liver metastases. Diagn Interv Radiol. 2015;21(1):54–9.  https://doi.org/10.5152/dir.2014.14036.CrossRefGoogle Scholar
  21. 21.
    Singla S, LeVea CM, Pokuri VK, et al. Ki67 score as a potential predictor in the selection of liver-directed therapies for metastatic neuroendocrine tumors: a single institutional experience. J Gastrointest Oncol. 2016;7(3):441–8.  https://doi.org/10.21037/jgo.2016.02.02.CrossRefGoogle Scholar
  22. 22.
    Cao CQ, Yan TD, Bester L, et al. Radioembolization with yttrium microspheres for neuroendocrine tumour liver metastases. Br J Surg. 2010;97(4):537–43.  https://doi.org/10.1002/bjs.6931.CrossRefGoogle Scholar
  23. 23.
    Chen JX, Rose S, White SB, et al. Embolotherapy for neuroendocrine tumor liver metastases: prognostic factors for hepatic progression-free survival and overall survival. Cardiovasc Intervent Radiol. 2017;40(1):69–80.  https://doi.org/10.1007/s00270-016-1478-z.CrossRefGoogle Scholar
  24. 24.
    Barbier CE, Garske-Román U, Sandström M, et al. Selective internal radiation therapy in patients with progressive neuroendocrine liver metastases. Eur J Nucl Med Mol Imaging. 2016;43(8):1425–31.  https://doi.org/10.1007/s00259-015-3264-6.CrossRefGoogle Scholar
  25. 25.
    Kennedy AS, Dezarn WA, McNeillie P, et al. Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in 148 patients. Am J Clin Oncol. 2008;31(3):271–9.  https://doi.org/10.1097/COC.0b013e31815e4557.CrossRefGoogle Scholar
  26. 26.
    Saxena A, Chua TC, Bester L, et al. Factors predicting response and survival after yttrium-90 radioembolization of unresectable neuroendocrine tumor liver metastases: a critical appraisal of 48 cases. Ann Surg. 2010;251(5):910–6.  https://doi.org/10.1097/SLA.0b013e3181d3d24a.CrossRefGoogle Scholar
  27. 27.
    Ozao-Choy J, Friedman ML, Kim AS, et al. Radioembolization for treatment of liver metastases from neuroendocrine tumors: correlation with imaging and biomarkers. Pancreas. 2013;42(2):358–60.  https://doi.org/10.1097/MPA.0b013e31825f4087.CrossRefGoogle Scholar
  28. 28.
    Tomozawa Y, Jahangiri Y, Pathak P, Kolbeck KJ, Schenning RC, Kaufman JA, Farsad K. Long-term toxicity after transarterial radioembolization with yttrium-90 using resin microspheres for neuroendocrine tumor liver metastases. J Vasc Interv Radiol. 2018;29(6):858–65.  https://doi.org/10.1016/j.jvir.2018.02.002.CrossRefGoogle Scholar
  29. 29.
    Kennedy AS, McNeillie P, Dezarn WA, et al. Treatment parameters and outcome in 680 treatments of internal radiation with resin 90Y-microspheres for unresectable hepatic tumors. Int J Radiat Oncol Biol Phys. 2009;74(5):1494–500.  https://doi.org/10.1016/j.ijrobp.2008.10.005.CrossRefGoogle Scholar
  30. 30.
    Elschot M, Nijsen JF, Lam MGEH, et al. (99m)Tc-MAA overestimates the absorbed dose to the lungs in radioembolization: a quantitative evaluation in patients treated with 166Ho-microspheres. Eur J Nucl Med Mol Imaging. 2014;41(10):1965–75.  https://doi.org/10.1007/s00259-014-2784-9.CrossRefGoogle Scholar
  31. 31.
    Soulen MC, van Houten D, Teitelbaum UR, Damjanov N, Cengel KA, Metz DC. Safety and feasibility of integrating yttrium-90 radioembolization with capecitabine-temozolomide for grade 2 liver-dominant metastatic neuroendocrine tumors. Pancreas. 2018;47(8):980–4.CrossRefGoogle Scholar
  32. 32.
    Braat AJAT, Kwekkeboom DJ, Kam BLR, et al. Additional hepatic 166Ho-radioembolization in patients with neuroendocrine tumours treated with 177Lu-DOTATATE; a single center, interventional, non-randomized, non-comparative, open label, phase II study (HEPAR PLUS trial). BMC Gastroenterol. 2018;18(1):84.  https://doi.org/10.1186/s12876-018-0817-8.CrossRefGoogle Scholar
  33. 33.
    Mikell JK, Mahvash A, Siman W, et al. Selective internal radiation therapy with yttrium-90 glass microspheres: biases and uncertainties in absorbed dose calculations between clinical dosimetry models. Int J Radiat Oncol Biol Phys. 2016;96(4):888–96.  https://doi.org/10.1016/j.ijrobp.2016.07.021.CrossRefGoogle Scholar
  34. 34.
    Garin E, Lenoir L, Edeline J, et al. Boosted selective internal radiation therapy with 90Y-loaded glass microspheres (B-SIRT) for hepatocellular carcinoma patients: a new personalized promising concept. Eur J Nucl Med Mol Imaging. 2013;40(7):1057–68.  https://doi.org/10.1007/s00259-013-2395-x.CrossRefGoogle Scholar
  35. 35.
    Smits MLJ, Elschot M, Sze DY, et al. Radioembolization dosimetry: the road ahead. Cardiovasc Intervent Radiol. 2015;38(2):261–9.  https://doi.org/10.1007/s00270-014-1042-7.CrossRefGoogle Scholar
  36. 36.
    Chansanti O, Jahangiri Y, Matsui Y, et al. tumor dose response in yttrium-90 resin microsphere embolization for neuroendocrine liver metastases: a tumor-specific analysis with dose estimation using SPECT-CT. J Vasc Interv Radiol. 2017;28(11):1528–35.  https://doi.org/10.1016/j.jvir.2017.07.008.CrossRefGoogle Scholar
  37. 37.
    Fidelman N, Kerlan RK Jr, Hawkins RA, et al. 90Y glass microspheres for the treatment of unresectable metastatic liver disease from chemotherapy-refractory gastrointestinal cancers: a pilot study. J Gastrointest Cancer. 2014;45(2):168–80.  https://doi.org/10.1007/s12029-013-9566-7.CrossRefGoogle Scholar
  38. 38.
    Turkmen C, Ucar A, Poyanli A, et al. Initial outcome after selective intraarterial radionuclide therapy with yttrium-90 microspheres as salvage therapy for unresectable metastatic liver disease. Cancer Biother Radiopharm. 2013;28(7):534–40.  https://doi.org/10.1089/cbr.2012.1455.CrossRefGoogle Scholar
  39. 39.
    Cramer B, Xing M, Kim HS. prospective longitudinal quality of life assessment in patients with neuroendocrine tumor liver metastases treated with 90Y radioembolization. Clin Nucl Med. 2016;41(12):e493–7.  https://doi.org/10.1097/RLU.0000000000001383.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2019

Authors and Affiliations

  • A. J. A. T. Braat
    • 1
    Email author
  • S. C. Kappadath
    • 2
  • H. Ahmadzadehfar
    • 3
  • C. L. Stothers
    • 4
  • A. Frilling
    • 5
  • C. M. Deroose
    • 6
  • P. Flamen
    • 7
  • D. B. Brown
    • 4
  • D. Y. Sze
    • 8
  • A. Mahvash
    • 9
  • M. G. E. H. Lam
    • 1
  1. 1.Department of Radiology and Nuclear Medicine, Imaging DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Department of Imaging PhysicsUniversity of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.Department of Nuclear MedicineUniversity Hospital BonnBonnGermany
  4. 4.Department of Radiology and Radiologic SciencesVanderbilt UniversityNashvilleUSA
  5. 5.Department of Surgery and CancerImperial College LondonLondonUK
  6. 6.Department of Nuclear MedicineUniversity Hospital LeuvenLouvainBelgium
  7. 7.Department of Nuclear MedicineJules Bordet InstituteBrusselsBelgium
  8. 8.Department of Interventional RadiologyStanford UniversityPalo AltoUSA
  9. 9.Department of Interventional RadiologyUniversity of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations