Skip to main content

Advertisement

Log in

The Role of Interventional Oncology in the Management of Lung Cancer

  • Review
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Interventional radiological procedures for diagnosis and treatment of lung cancer have become increasingly important. Imaging-guided percutaneous biopsy has become the modality of choice for diagnosing lung cancer, and in the era of target therapies, it is an useful tool to define earlier patient-specific tumor phenotypes. In functionally inoperable patients, especially the ablative procedures are potentially curative alternatives to surgery. In addition to thermally ablative treatment, selective chemoembolization by a vascular access allows localized therapy. These treatments are considered for patients in a reduced general condition which does not allow systemic chemotherapy. The present article reviews the role of interventional oncology in the management of primary lung cancer, focusing on the state of the art for each procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stewart BW, Wild C. World Cancer Report. Lyon: International Agency for Research on Cancer; World Health Organization; 2014.

    Google Scholar 

  2. Gangi A, Buy X. Imagerie interventionelle du cancer bronchique: du diagnostic ai traitement. Rev Mal Respir. 2007;24:6S137–45.

    Article  CAS  PubMed  Google Scholar 

  3. Priola AM, Priola SM, Cataldi A, et al. Accuracy of CT-guided transthoracic needle biopsy of lung lesions: factors affecting diagnostic yield. Radiol Med. 2007;112:1142–59.

    Article  CAS  PubMed  Google Scholar 

  4. Abi-Jaoudeh N, Duffy AG, Greten TF, et al. Personalized oncology in interventional radiology. J Vasc Interv Radiol. 2013;24:1083–92.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fujita S, Mio T, Sonobe M, et al. Accuracy of epidermal growth factor receptor mutation analysis on the basis of small biopsy specimens in patients with nonsmall cell lung cancer. Int J Cancer. 2006;119:1751–2.

    Article  CAS  PubMed  Google Scholar 

  6. Hsieh MH, Fang YF, Chang WC, et al. Complex mutation patterns of epidermal growth factor receptor gene associated with variable responses to gefitinib treatment in patients with non-small cell lung cancer. Lung Cancer. 2006;53:311–22.

    Article  PubMed  Google Scholar 

  7. Solomon SB, Zakowski MF, Pao W, et al. Core needle lung biopsy specimens: adequacy for EGFR and KRAS mutational analysis. AJR Am J Roentgenol. 2010;194:266–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yoon HJ, Lee HY, Lee KS, et al. Repeat biopsy for mutational analysis of non-small cell lung cancers resistant to previous chemotherapy: adequacy and complications. Radiology. 2012;265:939–48.

    Article  PubMed  Google Scholar 

  9. Rotolo N, Floridi C, Imperatori A, et al. Comparison of cone-beam CT-guided and CT fluoroscopy-guided transthoracic needle biopsy of lung nodules. Eur Radiol. 2016;26:381–9.

    Article  PubMed  Google Scholar 

  10. O’Neill AC, McCarthy C, Ridge CA, et al. Rapid needle-out patient-rollover time after percutaneous CT-guided transthoracic biopsy of lung nodules: effect on pneumothorax rate. Radiology. 2012;262(1):314–9.

    Article  PubMed  Google Scholar 

  11. Kim JI, Park CM, Lee SM, et al. Rapid needle-out patient-rollover approach after cone beam CT-guided lung biopsy: effect on pneumothorax rate in 1,191 consecutive patients. Eur Radiol. 2015;25:1845–53.

    Article  PubMed  Google Scholar 

  12. Dendo S, Kanazawa S, Ando A, et al. Preoperative localization of small pulmonary lesions with a short hook wire and suture system: experience with 168 procedures. Radiology. 2002;225(2):511–8.

    Article  PubMed  Google Scholar 

  13. Pereira PL, Masala S. Cardiovascular and Interventional Radiological Society of Europe (CIRSE). Standards of practice: guidelines for thermal ablation of primary and secondary lung tumors. Cardiovasc Intervent Radiol. 2012;35(2):247–54.

    Article  PubMed  Google Scholar 

  14. Dupuy DE. Image-guided thermal ablation of lung malignancies. Radiology. 2011;260:633–55.

    Article  PubMed  Google Scholar 

  15. Goldberg SN, Gazelle GS, Compton CC, et al. Radiofrequency tissue ablation in the rabbit lung: efficacy and complications. Acad Radiol. 1995;2:776–84.

    Article  CAS  PubMed  Google Scholar 

  16. Dupuy DE, Zagoria RJ, Akerley W, et al. Percutaneous radiofrequency ablation of malignancies in the lung. AJR Am J Roentgenol. 2000;174:57–9.

    Article  CAS  PubMed  Google Scholar 

  17. Nahum Goldberg S, Dupuy DE. Image-guided radiofrequency tumor ablation: challenges and opportunities—part I. J Vasc Interv Radiol. 2001;12:1021–32.

    Article  CAS  PubMed  Google Scholar 

  18. Vogl TJ, Naguib NN, Lehnert T, et al. Radiofrequency, microwave and laser ablation of pulmonary neoplasms: clinical studies and technical considerations—Review article. Eur J Radiol. 2011;77:346–57.

    Article  PubMed  Google Scholar 

  19. Zhu JC, Yan TD, Morris DL. A systematic review of radiofrequency ablation for lung tumors. Ann Surg Oncol. 2008;15:1765–74.

    Article  PubMed  Google Scholar 

  20. Kim SR, Han HJ, Park SJ, et al. Comparison between surgery and radiofrequency ablation for stage I non-small cell lung cancer. Eur J Radiol. 2011;81:395–9.

    Article  PubMed  Google Scholar 

  21. Zemlyak A, Moore WH, Bilfinger TV. Comparison of survival after sublobar resections and ablative therapies for stage I non-small cell lung cancer. J Am Coll Surg. 2010;211:68–72.

    Article  PubMed  Google Scholar 

  22. Safi S, Rauch G, op den Winkel J, et al. Sublobar resection, radiofrequency ablation or radiotherapy in stage I non-small cell lung cancer. Respiration. 2015;89:550–7.

    Article  PubMed  Google Scholar 

  23. Dupuy DE, Fernando HC, Hillman S, et al. Radiofrequency ablation of stage IA non-small cell lung cancer in medically inoperable patients: results from the American College of Surgeons Oncology Group Z4033 (Alliance) trial. Cancer. 2015;121:3491–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Baere T, Farouil G, Deschamps F, et al. Lung cancer ablation: what is the evidence? Semin Intervent Radiol. 2013;30:151–6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ridge CA, Silk M, Petre EN, et al. Radiofrequency ablation of T1 lung carcinoma: comparison of outcomes for first primary, metachronous, and synchronous lung tumors. J Vasc Interv Radiol. 2014;25:989–96.

    Article  PubMed  Google Scholar 

  26. Kodama H, Yamakado K, Hasegawa T, et al. Radiofrequency ablation using a multiple-electrode switching system for lung tumors with 2.0–5.0-cm maximum diameter: phase II clinical study. Radiology. 2015;277:895–902.

    Article  PubMed  Google Scholar 

  27. Simon CJ, Dupuy DE, DiPetrillo TA, et al. Pulmonary radiofrequency ablation: long-term safety and efficacy in 153 patients. Radiology. 2007;243:268–75.

    Article  PubMed  Google Scholar 

  28. Palussiere J, Lagarde P, Auperin A, et al. Percutaneous lung thermal ablation of non-surgical clinical N0 non-small cell lung cancer: results of eight years’ experience in 87 patients from two centers. Cardiovasc Intervent Radiol. 2015;38:160–6.

    Article  PubMed  Google Scholar 

  29. Hiraki T, Gobara H, Mimura H, et al. Percutaneous radiofrequency ablation of clinical stage I non-small cell lung cancer. J Thorac Cardiovasc Surg. 2011;142:24–30.

    Article  PubMed  Google Scholar 

  30. Huang L, Han Y, Zhao J, et al. Is radiofrequency thermal ablation a safe and effective procedure in the treatment of pulmonary malignancies? Eur J Cardiothorac Surg. 2011;39:348–51.

    Article  PubMed  Google Scholar 

  31. Ambrogi MC, Fanucchi O, Cioni R, et al. Long-term results of radiofrequency ablation treatment of stage I non-small cell lung cancer: a prospective intention-to-treat study. J Thorac Oncol. 2011;6(12):2044–51.

    Article  PubMed  Google Scholar 

  32. Lanuti M, Sharma A, Willers H, et al. Radiofrequency ablation for stage I non-small cell lung cancer: management of locoregional recurrence. Ann Thorac Surg. 2012;93:921–7.

    Article  PubMed  Google Scholar 

  33. Lencioni R, Crocetti L, Cioni R, et al. Response to radiofrequency ablation of pulmonary tumours: a prospective, intention intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol. 2008;9:621–8.

    Article  PubMed  Google Scholar 

  34. Liu B, Liu L, Hu M, et al. vPercutaneous radiofrequency ablation for medically inoperable patients with clinical stage I non-small cell lung cancer. Thorac Cancer. 2015;6:327–33.

    Article  PubMed  Google Scholar 

  35. Carrafiello G, Mangini M, Fontana F, et al. Radiofrequency ablation for single lung tumours not suitable for surgery: seven years’ experience. Radiol Med. 2012;117:1320–32.

    Article  CAS  PubMed  Google Scholar 

  36. Carrafiello G, Mangini M, De Bernardi I, et al. Microwave ablation therapy for treating primary and secondary lung tumours: technical note. Radiol Med. 2010;115:962–74.

    Article  CAS  PubMed  Google Scholar 

  37. Wolf FJ, Grand DJ, Machan JT, et al. Microwave ablation of lung malignancies: effectiveness, CT findings, and safety in 50 patients. Radiology. 2008;247:871–9.

    Article  PubMed  Google Scholar 

  38. Lu Q, Cao W, Huang L, Wan Y, et al. CT-guided percutaneous microwave ablation of pulmonary malignancies: results in 69 cases. World J Surg Oncol. 2012;7(10):80.

    Article  Google Scholar 

  39. Belfiore G, Ronza F, Belfiore MP, et al. Patients’ survival in lung malignancies treated by microwave ablation: our experience on 56 patients. Eur J Radiol. 2013;82:177–81.

    Article  CAS  PubMed  Google Scholar 

  40. Liu H, Steinke K. High-powered percutaneous microwave ablation of stage I medically non-small cell lung cancer: a preliminary study. J Med Imaging Radiat Oncol. 2013;57:466–744.

    Article  CAS  PubMed  Google Scholar 

  41. Yang X, Ye X, Zheng A, et al. Percutaneous microwave ablation of stage I medically inoperable non-small cell lung cancer: clinical evaluation of 47 cases. J Surg Oncol. 2014;110:758–63.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wei Z, Ye X, Yang X, et al. Microwave ablation plus chemotherapy improved progression-free survival of advanced non-small cell lung cancer compared to chemotherapy alone. Med Oncol. 2015;32:464.

    Article  PubMed  Google Scholar 

  43. Wei Z, Ye X, Yang X, et al. Microwave ablation in combination with chemotherapy for the treatment of advanced non-small cell lung cancer. Cardiovasc Intervent Radiol. 2015;38:135–42.

    Article  PubMed  Google Scholar 

  44. Xu X, Ye X, Liu G, et al. Targeted percutaneous microwave ablation at the pulmonary lesion combined with mediastinal radiotherapy with or without concurrent chemotherapy in locally advanced non-small cell lung cancer evaluation in a randomized comparison study. Med Oncol. 2015;32:227.

    Article  PubMed  Google Scholar 

  45. Carrafiello G, Mangini M, Fontana F, et al. Microwave ablation of lung tumours: single-centre preliminary experience. Radiol Med. 2014;119:75–82.

    Article  PubMed  Google Scholar 

  46. Gage AA, Baust J. Mechanisms of tissue injury in cryo-surgery. Cryobiology. 1998;37:171–86.

    Article  CAS  PubMed  Google Scholar 

  47. Hinshaw JL, Lee FT Jr, Laeseke PF, et al. Temperature isotherms during pulmonary cryoablation and their correlation with the zone of ablation. J Vasc Intervent Radiol. 2010;21:1424–8.

    Article  Google Scholar 

  48. Hinshaw JL, Littrup PJ, Durick N, et al. Optimizing the protocol for pulmonary cryoablation: a comparison of a dual- and triple- freeze protocol. Cardiovasc Intervent Radiol. 2010;33:1180–5.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Inoue M, Nakatsuka S, Jinzaki M. Cryoablation of early-stage primary lung cancer. Biomed Res Int. 2014;2014:52–1691.

    Article  Google Scholar 

  50. Yamauchi Y, Izumi Y, Hashimoto K, et al. Percutaneous cryoablation for the treatment of medically inoperable stage I non-small cell lung cancer. PLoS ONE. 2012;7:e33223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang X, Tian J, Zhao L, et al. CT-guided conformal cryoablation for peripheral NSCLC: initial experience. Eur J Radiol. 2012;81:3354–62.

    Article  PubMed  Google Scholar 

  52. Pusceddu C, Sotgia B, Fele RM et al (2013) CT-guided thin needles percutaneous cryoablation (PCA) in patients with primary and secondary lung tumors: a preliminary experience. Eur J Radiol 82:246–e253.

  53. Yashiro H, Nakatsuka S, Inoue M, et al. Factors affecting local progression after percutaneous cryoablation of lung tumors. J Vasc Intervent Radiol. 2013;24:813–21.

    Article  Google Scholar 

  54. Golder WA. Chemoembolization of the lungs: basic anatomical elements, experimental results, clinical experience. Onkologe. 2008;14:934–9.

    Article  Google Scholar 

  55. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6:583–92.

    Article  CAS  PubMed  Google Scholar 

  56. Walker CM, Rosado-de-Christenson ML, Martínez-Jiménez S, et al. Bronchial arteries: anatomy, function, hypertrophy, and anomalies. Radiographics. 2015;35:32–49.

    Article  PubMed  Google Scholar 

  57. Vogl TJ, Shafinaderi M, Zangos S, et al. Regional chemotherapy of the lung: transpulmonary chemoembolization in malignant lung tumors. Semin Intervent Radiol. 2013;30:176–84.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Franke UF, Wittwer T, Lessel M, et al. Evaluation of isolated lung perfusion as neoadjuvant therapy of lung metastases using a novel in vivo pig model: i. Influence of perfusion pressure and hyperthermia on functional and morphological lung integrity. Eur J Cardiothorac Surg. 2004;26:792–9.

    Article  PubMed  Google Scholar 

  59. Schneider P, Kampfer S, Loddenkemper C, et al. Chemoembolization of the lung improves tumor control in a rat model. Clin Cancer Res. 2002;8:2463–8.

    CAS  PubMed  Google Scholar 

  60. Lindemayr S, Lehnert T, Korkusuz H, et al. Transpulmonary chemoembolization: a novel approach for the treatment of unresectable lung tumors. Tech Vasc Intervent Rad. 2007;10:114–9.

    Article  Google Scholar 

  61. Baylatry MT, Pelage JP, Wassef M, et al. Pulmonary artery chemoembolization in a sheep model: evaluation of performance and safety of irinotecan eluting beads (DEB-IRI). J Biomed Mater Res B Appl Biomater. 2011;98:351–9.

    Article  PubMed  Google Scholar 

  62. Park HS, Kim YI, Kim HY, et al. Bronchial artery and systemic artery embolization in the management of primary lung cancer patients with hemoptysis. Cardiovasc Intervent Radiol. 2007;30:638–43.

    Article  PubMed  Google Scholar 

  63. Garcia-Olivé I, Sanz-Santos J, Centeno C, et al. Results of bronchial artery embolization for the treatment of hemoptysis caused by neoplasm. J Vasc Interv Radiol. 2014;25:221–8.

    Article  PubMed  Google Scholar 

  64. Prévost JB, Nuyttens JJ, Hoogeman MS, et al. Endovascular coils as lung tumour markers in real-time tumour tracking stereotactic radiotherapy: preliminary results. Eur Radiol. 2008;18:1569–76.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Karaman K, Dokdok AM, Karadeniz O, et al. Intravascular placement of metallic coils as lung tumor markers for cyberknife stereotactic radiation therapy. Korean J Radiol. 2015;16:626–31.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mallick R, Demmy T. Regional lung chemotherapy techniques. Innovations (Phila). 2011;6:1–9.

    Article  Google Scholar 

  67. Nakanishi M, Demura Y, Umeda Y, et al. Multi-arterial infusion chemotherapy for non-small cell lung carcinoma–significance of detecting feeding arteries and tumor staining. Lung Cancer. 2008;61:227–34.

    Article  PubMed  Google Scholar 

  68. Demmy TL, Tomaszewski G, Dy GK, et al. Thoracoscopic organ suffusion for regional lung chemotherapy (preliminary results). Ann Thorac Surg. 2009;88:385–90.

    Article  PubMed  Google Scholar 

  69. Ferris EJ. Pulmonary hemorrhage. Vascular evaluation and interventional therapy. Chest. 1981;80:710–4.

    Article  CAS  PubMed  Google Scholar 

  70. Chun JY, Morgan R, Belli AM, et al. Radiological management of hemoptysis: a comprehensive review of diagnostic imaging and bronchial arterial embolization. Cardiovasc Intervent Radiol. 2010;33:240–50.

    Article  PubMed  Google Scholar 

  71. Hahn S, Kim YJ, Kwon W, et al. Comparison of the effectiveness of embolic agents for bronchial artery embolization: gelfoam versus polyvinyl alcohol. Korean J Radiol. 2010;11:542–6.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yoon W, Kim JK, Kim YH, et al. Bronchial and nonbronchial systemic artery embolization for life-threatening hemoptysis: a comprehensive review. Radiographics. 2002;22:1395–409.

    Article  PubMed  Google Scholar 

  73. Baltacioglu F, Cimsit NC, Bostanci K, et al. Transarterial microcatheter glue embolization of the bronchial artery for life-threatening hemoptysis: technical and clinical results. Eur J Radiol. 2010;73:380–4.

    Article  PubMed  Google Scholar 

  74. Razavi MK, Murphy K. Embolization of bronchial arteries with N-butyl cyanoacrylate for management of massive hemoptysis: a technical review. Tech Vasc Interv Radiol. 2007;10:276–82.

    Article  PubMed  Google Scholar 

  75. Woo S, Yoon CJ, Chung JW, et al. Bronchial artery embolization to control hemoptysis: comparison of N-butyl-2-cyanoacrylate and polyvinyl alcohol particles. Radiology. 2013;269:594–602.

    Article  PubMed  Google Scholar 

  76. Andersen PE. Imaging and interventional radiological treatment of hemoptysis. Acta Radiol. 2006;47:780–92.

    Article  CAS  PubMed  Google Scholar 

  77. Ittrich H, Klose H, Adam G. Radiologic management of haemoptysis: diagnostic and interventional bronchial arterial embolisation. Fortschr Röntgenstr. 2015;187:248–59.

    Article  CAS  Google Scholar 

  78. Nakanishi M, Umeda Y, Demura Y, et al. Effective use of multi-arterial infusion chemotherapy for advanced non-small cell lung cancer patients: four clinical specified cases. Lung Cancer. 2007;55:241–7.

    Article  PubMed  Google Scholar 

  79. Nakanishi M, Yoshida Y, Natazuka T. Prospective study of transarterial infusion of docetaxel and cisplatin to treat non-small-cell lung cancer in patients contraindicated for standard chemotherapy. Lung Cancer. 2012;77:353–8.

    Article  PubMed  Google Scholar 

  80. Yuan Z, Li WT, Ye XD, et al. Intra-arterial infusion chemotherapy for advanced non-small-cell lung cancer: preliminary experience on the safety, efficacy, and clinical outcomes. J Vasc Interv Radiol. 2013;24(1521–8):e4.

    Google Scholar 

  81. Yim CD, Sane SS, Bjarnason H. Superior vena cava stenting. Radiol Clin North Am. 2000;38:409–24.

    Article  CAS  PubMed  Google Scholar 

  82. Fagedet D, Thony F, Timsit JF, et al. Endovascular treatment of malignant superior vena cava syndrome: results and predictive factors of clinical efficacy. Cardiovasc Intervent Radiol. 2013;36:140–9.

    Article  PubMed  Google Scholar 

  83. Lanciego C, Pangua C, Chacón JI, et al. Endovascular stenting as the first step in the overall management of malignant superior vena cava syndrome. AJR Am J Roentgenol. 2009;193:549–58.

    Article  PubMed  Google Scholar 

  84. Uberoi R. Quality assurance guidelines for superior vena cava stenting in malignant disease. Cardiovasc Intervent Radiol. 2006;29:319–22.

    Article  PubMed  Google Scholar 

  85. Bierdrager E, Lampmann LEH, Lohle PNM, et al. Endovascular stenting in neoplastic superior vena cava syndrome prior to chemotherapy or radiotherapy. Neth J Med. 2005;63:20–3.

    CAS  PubMed  Google Scholar 

  86. Nagata T, Makutani S, Uchida H, et al. Follow-up results of 71 patients undergoing metallic stent placement for the treatment of a malignant obstruction of the superior vena cava. Cardiovasc Intervent Radiol. 2007;30:959–67.

    Article  PubMed  Google Scholar 

  87. Gwon DI, Ko GY, Kim JH, et al. Malignant superior vena cava syndrome: a comparative cohort study of treatment with covered stents versus uncovered stents. Radiology. 2013;266:979–87.

    Article  PubMed  Google Scholar 

  88. Maleux G, Gillardin P, Fieuws S, et al. Large-bore nitinol stents for malignant superior vena cava syndrome: factors influencing outcome. AJR Am J Roentgenol. 2013;201:667–74.

    Article  PubMed  Google Scholar 

  89. Sobrinho G, Aguiar P. Stent placement for the treatment of malignant superior vena cava syndrome—a single-center series of 56 patients. Arch Bronconeumol. 2014;50:135–40.

    Article  PubMed  Google Scholar 

  90. Andersen PE, Duvnjak S. Palliative treatment of superior vena cava syndrome with nitinol stents. Int J Angiol. 2014;23:255–62.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cho Y, Gwon DI, Ko GY, et al. Covered stent placement for the treatment of malignant superior vena cava syndrome: is unilateral covered stenting safe and effective? Korean J Radiol. 2014;15:87–94.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Andersen PE, Midtgaard A, Brenöe AS, et al. A new nitinol stent for use in superior vena cava syndrome. Initial clinical experience. J Cardiovasc Surg. 2015;56:877–81.

    CAS  Google Scholar 

  93. Mokry T, Bellemann N, Sommer CM, et al. Retrospective study in 23 patients of the self-expanding sinus-XL stent for treatment of malignant superior vena cava obstruction caused by non-small cell lung cancer. J Vasc Interv Radiol. 2015;26:357–65.

    Article  PubMed  Google Scholar 

  94. Gulati A, Shah R, Puttanniah V, et al. A retrospective review and treatment paradigm of interventional therapies for patients suffering from intractable thoracic chest wall pain in the oncologic population. Pain Med. 2015;16:802–10.

    Article  PubMed  Google Scholar 

  95. Wong FC, Lee TW, Yuen KK, et al. Intercostal nerve blockade for cancer pain: effectiveness and selection of patients. Hong Kong Med J. 2007;13:266–70.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpaolo Carrafiello.

Ethics declarations

Conflict of interest

Ejona Duka, Anna Maria Ierardi, Chiara Floridi, Alberto Terrana, Federico Fontana, Gianpaolo Carrafiello have no conflict of interest.

Ethical approval

“All procedures performed were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.”

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duka, E., Ierardi, A.M., Floridi, C. et al. The Role of Interventional Oncology in the Management of Lung Cancer. Cardiovasc Intervent Radiol 40, 153–165 (2017). https://doi.org/10.1007/s00270-016-1495-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-016-1495-y

Keywords

Navigation