Advertisement

Crystal structure of impurity-free rhodochrosite (MnCO3) and thermal expansion properties

  • Wen LiangEmail author
  • Lin Li
  • Rui Li
  • Yuan Yin
  • Zeming Li
  • Xiqiang Liu
  • Shuangmin Shan
  • Yu He
  • Yong Meng
  • Zengsheng Li
  • Heping LiEmail author
Original Paper
  • 23 Downloads

Abstract

To explain the anomalous anisotropy in thermal expansion properties reported in rhodochrosite (MnCO3) previously Rao and Murthy (J Mater Sci 5: 82, 1970), Li et al. (High Temp High Press, 2019), the evaluation of crystal structure is thought to be indispensable as an important aspect in mineralogy. In this spirit, single crystals of impurity-free rhodochrosite, up to 100 μm in size, were synthesized under high-pressure–temperature (PT) conditions. The standard crystal structure, without the impurities common to natural samples, was investigated by means of single-crystal X-ray diffraction (XRD). The unit cell parameters obtained for the \(R\overline{3}c\) symmetry were a = 4.7754(5) Å and c = 15.6484(18) Å, with a final R value of 0.0162. The (MnO6) octahedron exhibits an anomalous bond angle that tends more toward 90° of a regular octahedron, which is totally different from those of MgCO3, FeCO3, and CaCO3. Using the single-crystal XRD from 100 to 370 K, the thermal expansion coefficients were quantified as αa = 5.08 × 10−6 K−1 and αc = 18.06 × 10–6 K−1, as well as αVunit cell = 28.49 × 10–6 K−1. The geometry of (MnO6) octahedron as function of temperature was also determined as αMn–O = 12.14 × 10−6 K−1 and αO–Mn–O ≈ 0.05°/100 K. The anisotropy of MnCO3 (αa/αc = 3.55), similar to that of MgCO3 (~ 3.0, Markgraf and Reeder, Am Mineral, 70: 590–600, 1985), indicates that the difference in bond angle has no significant effect on the thermal expansion properties. According to the standard crystal structures of end members (MgCO3, FeCO3, MnCO3, and CaCO3), the cation substitution in calcite-type structures is proven to agree with the rigid body model and the linear solid solution relationship is highly consistent with those of natural carbonates.

Keywords

Impurity-free rhodochrosite single crystal Crystal structure Single-crystal XRD Thermal expansion 

Notes

Acknowledgements

We appreciate two anonymous reviewers for their valuable comments and suggestions. We acknowledge Jung-Fu Lin from University of Texas at Austin for constructive discussion in carbonate minerals. This work was financially supported by Major State Research Development Program of China (2016YFC0601101), the National Science Foundation for Young Scientists of China (41802044), National Natural Fund of China (4160030283), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (XDB 18010401), 135 Program of the Institute of Geochemistry (Y2ZZ041000), CAS, and the Western Light (Y8CR028).

Supplementary material

269_2019_1078_MOESM1_ESM.doc (291 kb)
Supplementary file1 (DOC 291 kb)

References

  1. Biellmann C, Gillet P, Guyot FO, Peyronneau J, Reynard B (1993) Experimental evidence for carbonate stability in the Earth’s lower mantle. Earth Planet Sci Lett 118:31–41CrossRefGoogle Scholar
  2. Burke IT, Kemp AES (2002) Microfabric analysis of Mn-carbonate laminae deposition and Mn-sulfide formation in the Gotland Deep, Baltic Sea. Geochim Cosmochim Acta 66:1589–1600CrossRefGoogle Scholar
  3. Cerantola V, McCammon C, Kupenko I, Kantor I, Marini C, Wilke M, Ismailova L, Solopova N, Chumakov A, Pascarelli S, Dubrovinsky L (2015) High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin rossover. Am Mineral 100:2670–2681CrossRefGoogle Scholar
  4. Cerantola V, Bykova E, Kupenko I, Merlini M, Ismailova L, McCammon C, Bykov M, Chumakov AI, Petitgirard S, Kantor I, Svitlyk V, Jacobs J, Hanfland M, Mezouar M, Prescher C, Ruffer R, Prakapenka VB, Dubrovinsky L (2017) Stability of iron-bearing carbonates in the deep Earth’s interior. Nat Commun 8:15960CrossRefGoogle Scholar
  5. Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13CrossRefGoogle Scholar
  6. Duan J, Fu Y, Zhang Z, Ma X, Xiao J (2019) The metallogenic environment of the Dounan manganese deposit, Southeast Yunnan, China: evidence from geochemistry and Moesbauer spectroscopic. Acta Geochim 38:78–94CrossRefGoogle Scholar
  7. Effenberger H, Mereiter K, Zemann J (1981) Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Zeitschrift fur Kristallographie 156:233–243Google Scholar
  8. Fan D, Hein JR, Ye J (1999) Ordovician reef-hosted Jiaodingshan Mn–Co deposit and Dawashan Mn deposit, Sichuan Province, China. Ore Geol Rev 15:135–151CrossRefGoogle Scholar
  9. Farfan GA, Boulard E, Wang S, Mao WL (2013) Bonding and electronic changes in rhodochrosite at high pressure. Am Mineral 98:1817–1823CrossRefGoogle Scholar
  10. Fiquet G, Guyot F, Itie LP (1994) High-pressure X-ray diffraction study of carbonates: MgCO3, CaMg(CO3)2, and CaCO3. Am Mineral 79:15–23Google Scholar
  11. Gillet P, Biellmann C, Reynard B, McMillan P (1993) Raman spectroscopic studies of carbonates part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys Chem Miner 20:1–18Google Scholar
  12. Graf DL (1961) Crystallographic tables for the rhombohedral carbonates. Am Mineral 46:1283–1316Google Scholar
  13. Hazen RM, Finger L (1982) Comparative crystal chemistry: temperature, pressure, composition and the variation of crystal structure. Wiley, New York, p 228Google Scholar
  14. Hazen RM, Hemley RJ, Mangum AJ (2012) Carbon in Earth's interior: storage, cycling, and life. Eos Trans Am Geophys Union 93(2):17–18CrossRefGoogle Scholar
  15. Ishizawa N, Setoguchi H, Yanagisawa K (2013) Structural evolution of calcite at high temperatures: phase V unveiled. Sci Rep 3:2832CrossRefGoogle Scholar
  16. Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427:60–63CrossRefGoogle Scholar
  17. Javoy M (1997) The major volatile elements of the Earth: their origin, behaviour, and fate. Geophys Res Lett 24:177–180CrossRefGoogle Scholar
  18. Lavina B, Dera P, Downs RT, Prakapenka V, Rivers M, Sutton S, Nicol M (2009) Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophys Res Lett 36:L23306CrossRefGoogle Scholar
  19. Li R, Liang W, He H, Meng Y, Tang H (2019) The high-pressure synthesis and thermal expansivity investigation of carbonates solid solutions Mg1–xMnxCO3. High Temp High Press 48:367–380Google Scholar
  20. Liang W, Li Z, Yin Y, Li R, Chen L, He Y, Dong H, Dai L, Li H (2018a) Single crystal growth, characterization and high-pressure Raman spectroscopy of impurity-free magnesite (MgCO3). Phys Chem Miner 45:423–434CrossRefGoogle Scholar
  21. Liang W, Yin Y, Li Z, Li R, Lin L, He Y, Dong H, Li Z, Yan S, Zhai S, Li H (2018b) Single crystal growth, crystalline structure investigation and high-pressure behavior of impurity-free siderite (FeCO3). Phys Chem Miner 45:831–842CrossRefGoogle Scholar
  22. Liang W, Chen L, Wang L, Yin Y, Li Z, Li H (2018c) High pressure synthesis of siderite (FeCO3) and its thermal expansion coefficient. High Temp High Press 47:153–164Google Scholar
  23. Lin J-F, Liu J, Jacobs C, Prakapenka VB (2012) Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron. Am Mineral 97:583–591CrossRefGoogle Scholar
  24. Litasov KD, Ohtani E (2009) Solidus and phase relations of carbonated peridotite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to the lower mantle depths. Phys Earth Planet Inter 177:46–58CrossRefGoogle Scholar
  25. Liu L-G, Lin C-C, Yang Y-J (2001) Formation of diamond by decarbonation of MnCO3. Solid State Commun 118:195–198CrossRefGoogle Scholar
  26. Liu J, Lin J-F, Mao Z, Prakapenka VB (2014) Thermal equation of state and spin transition of magnesiosiderite at high pressure and temperature. Am Mineral 99:84–93CrossRefGoogle Scholar
  27. Liu J, Caracas R, Fan D, Bobocioiu E, Zhang D, Mao WL (2016) High-pressure compressibility and vibrational properties of (Ca, Mn)CO3. Am Mineral 101:2723–2730CrossRefGoogle Scholar
  28. Ma H, Xu Y, Huang K, Sun Y, Ke S, Peng Y, Shen B (2018) Heterogeneous Mg isotopic composition of the early Carboniferous limestone: implications for carbonate as a seawater archive. Acta Geochim 37:1–18CrossRefGoogle Scholar
  29. Markgraf SA, Reeder RJ (1985) High-temperature structure refinements of calcite and magnesite. Am Mineral 70:590–600Google Scholar
  30. Martens R, Rosenhauer M, Gehlen KV (1982) Compressibilities of carbonates. In: Schreyer W (ed) High-pressure researches in geoscience. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 215–222Google Scholar
  31. Maslen EN, Streltsov VA, Streltsova NR (1995) Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3. Acta Crystallogr B51:929–939CrossRefGoogle Scholar
  32. Megaw HD (1971) Crystal structures and thermal expansion. Mater Res Bull 6:1007–1018CrossRefGoogle Scholar
  33. Merlini M, Hanfland M, Gemmi M (2015) The MnCO3-II high-pressure polymorph of rhodochrosite. Am Mineral 100:2625–2629CrossRefGoogle Scholar
  34. Merlini M, Sapelli F, Fumagalli P, Gatta GD, Lotti P, Tumiati S, Aabdellatief M, Lausi A, Plaisier J, Hanfland M, Crichton W, Chantel J, Guignard J, Meneghini C, Pavese A, Poli P (2016) High-temperature and high-pressure behavior of carbonates in the ternary diagram CaCO3–MgCO3–FeCO3. Am Mineral 101:1423–1430CrossRefGoogle Scholar
  35. Oelkers EH, Cole DR (2008) Carbon dioxide sequestration a solution to a global problem. Elements 4:305–310CrossRefGoogle Scholar
  36. Ono S, Kikegawa T, Ohishi Y (2007) High-pressure transition of CaCO3. Am Mineral 92:1246–1249CrossRefGoogle Scholar
  37. Ozturk H, Frakes LA (1995) Sedimentation and diagenesis of an Oligocene manganese deposit in a shallow sub-basin of the Paratethys: Thrace Basin, Turkey. Ore Geol Rev 10:117–132CrossRefGoogle Scholar
  38. Peacor DR, Essene EJ, Gaines AM (1987) Petrologic and crystal-chemical implications of cation order-disorder in kutnahorite CaMn(CO3)2. Am Mineral 72:319–328Google Scholar
  39. Rao KVK, Murthy KS (1970) Thermal expansion of manganese carbonate. J Mater Sci 5:82–83CrossRefGoogle Scholar
  40. Reeder RJ (1983) Crystal chemistry of the rhombohedral carbonates. In: Reeder RJ (ed) Carbonates: mineralogy and chemistry. Reviews in mineralogy, 11. Mineralogical Society of America, Washington, DC, pp 1–48CrossRefGoogle Scholar
  41. Reeder RJ, Dollase WA (1989) Structural variation in the dolomite-ankerite solid-solution series: an X-ray, Moessbauer, and TEM study. Am Mineral 74:1159–1167Google Scholar
  42. Rosenberg PE (1963) Synthetic solid solutions in the systems MgCO3–FeCO3 and MnCO3–FeCO3. Am Mineral 48:1396–1400Google Scholar
  43. Ross NL (1997) The equation of state and high-pressure behavior of magnesite. Am Mineral 82:682–688CrossRefGoogle Scholar
  44. Santillan J, Williams Q (2004) A high-pressure infrared and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2-dolomite. Phys Earth Planet Inter 143–144:291–304CrossRefGoogle Scholar
  45. Seto Y, Hamane D, Nagai T, Fujino F (2008) Fate of carbonates within oceanic plates subducted to the lower mantle, and a possible mechanism of diamond formation. Phys Chem Miner 35:223–229CrossRefGoogle Scholar
  46. Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr A B25:925–946CrossRefGoogle Scholar
  47. Sheldrick GM (2008) Acta Crystallogr A 2008(64):112–122CrossRefGoogle Scholar
  48. Spivak A, Solopova N, Cerantola V, Bykova E, Zakharchenko E, Dubrovinsky L, Litvin Y (2014) Raman study of MgCO3–FeCO3 carbonate solid solution at high pressures up to 55 GPa. Phys Chem Miner 41:633–638CrossRefGoogle Scholar
  49. Suito K, Namba J, Horikawa T, Taniguchi Y, Sakurai N, Kobayashi M, Onodera A, Shimomura O, Kikegawa T (2001) Phase relations of CaCO3 at high pressure and high temperature. Am Mineral 86:997–1002CrossRefGoogle Scholar
  50. Williams Q, Collerson B, Knittle E (1992) Vibrational spectra of magnesite (MgCO3) and calcite-III at high pressures. Am Mineral 77:1158–1165Google Scholar
  51. Zhang J, Martinez I, Guyot F, Gillet P, Saxena SK (1997) X-ray diffraction study of magnesite at high pressure and high temperature. Phys Chem Miner 24:122–130CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Wen Liang
    • 1
    Email author
  • Lin Li
    • 2
    • 6
  • Rui Li
    • 1
    • 3
  • Yuan Yin
    • 1
    • 3
  • Zeming Li
    • 1
    • 3
  • Xiqiang Liu
    • 1
    • 3
  • Shuangmin Shan
    • 1
  • Yu He
    • 1
  • Yong Meng
    • 4
  • Zengsheng Li
    • 5
  • Heping Li
    • 1
    Email author
  1. 1.Key Laboratory of High Temperature and High Pressure Study of the Earth’s Interior, Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  2. 2.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.State Key Laboratory of Ore Deposit Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  5. 5.Shandong Geological Sciences InstituteJinanChina
  6. 6.Institute of Science ResearchChina University of GeosciencesBeijingChina

Personalised recommendations