Advertisement

Low-pressure ferroelastic phase transition in rutile-type AX2 minerals: cassiterite (SnO2), pyrolusite (MnO2) and sellaite (MgF2)

  • Nadia Curetti
  • Marcello Merli
  • Silvana Capella
  • Piera Benna
  • Alessandro PaveseEmail author
Original Paper
  • 21 Downloads

Abstract

The structural behaviour of cassiterite (SnO2), pyrolusite (MnO2) and sellaite (MgF2), i.e. AX2-minerals, has been investigated at room temperature by in situ high-pressure single-crystal diffraction, up to 14 GPa, using a diamond anvil cell. Such minerals undergo a ferroelastic phase transition, from rutile-like structure (SG: P42/mnm) to CaCl2-like structure (SG: Pnnm), at ≈ 10.25, 4.05 and 4.80 GPa, respectively. The structural evolution under pressure has been described by the trends of some structure parameters that are other than zero in the region of the low-symmetry phase’s stability. In particular, three tilting-angles (ω, ω′, ABS) and the metric distortion of the cation-centred octahedron (quantified via the difference between apical-anion and equatorial-anion distances Δ|Xax−Xeq|) are used to express the atoms’ readjustment, i.e. relaxation, taking place in the CaCl2-like structures under pressure. The crystallographic investigation presented is complemented with an analysis of the energy involved in the phase transition using the Landau formalism and adopting the following definition for the order parameter: Q = η11η22, ηij being the spontaneous strain tensor. The dependence of ω, ω′, ABS and Δ|Xax−Xeq| on Q allows determination of a correlation between geometrical deformation parameter and energy. Lastly, the relaxation mechanisms that exploits ω, ω′, ABS and Δ|Xax−Xeq| may be related to the ionic degree of bonding, the latter modelled via quantum mechanics and Bader theory. Sellaite, the mineral exhibiting the highest degree of ionic bonding among those investigated, tends to accomplish relaxation through pure rotation of the octahedron, rather than a metric distortion (Δ|Xax−Xeq|), which would shorten inter-atomic distances thus increasing repulsion between anions.

Keywords

High-pressure diffraction Ferroelastic phase transition Cassiterite Pyrolusite Sellaite 

Notes

Acknowledgements

The authors are very grateful to Marco Ciriotti (President of AMI, “Associazione Micromineralogica Italiana”) for supplying the natural samples and precise information about their geographic occurrences. Reviews from two anonymous referees greatly improved the manuscript; we are grateful to them for critical reading and useful suggestions. We sincerely thank Laurie Jayne Kurilla for giving valuable advice on the English language. The CrisDi and G Scansetti Interdepartmental Centers of University of Torino are acknowledged. The present investigation was partly funded by the Italian Ministry for Education, University and Research through the MIUR-Project PRIN 2017 (2017L83S77).

Supplementary material

269_2019_1057_MOESM1_ESM.cif (180 kb)
Supplementary material 1 (CIF 180 kb)
269_2019_1057_MOESM2_ESM.cif (135 kb)
Supplementary material 2 (CIF 135 kb)
269_2019_1057_MOESM3_ESM.cif (119 kb)
Supplementary material 3 (CIF 119 kb)

References

  1. Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SD (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Cryst 40:26–32.  https://doi.org/10.1107/S0021889806045523 CrossRefGoogle Scholar
  2. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, OxfordGoogle Scholar
  3. Bader RFW (2007) Everyman’s derivation of the theory of atoms in molecules. J Phys Chem A 111(32):7966–7972.  https://doi.org/10.1021/jp073213k CrossRefGoogle Scholar
  4. Bärnighausen H (1980) Group-subgroup relations between space groups: a useful tool in crystal chemistry. MATCH Commun Math Comput Chem 9:139–175Google Scholar
  5. Bärnighausen H, Bossert W, Anselment B (1984) A second-order phase transition of calcium bromide and its geometrical interpretation. Acta Cryst A40:C-96CrossRefGoogle Scholar
  6. Baur WH (1956) Uber die Verfeinerung der Kristallstrukturbestimmung einiger Vertreter des Rutiltyps: TiO2, SnO2, GeO2 und MgF2 (On the refinement of the crystal structure determination of some rutile-type compounds: TiO2, SnO2, GeO2 and MgF2). Acta Cryst 9:515–520CrossRefGoogle Scholar
  7. Baur WH (1976) Rutile-type compounds. V. Refinement of MnO2 and MgF2. Acta Cryst B32:2200–2204CrossRefGoogle Scholar
  8. Baur WH (1994) Rutile type derivatives. Z. Kristallogr 209:143–150Google Scholar
  9. Baur WH (2007) The rutile type and its derivatives. Crystallogr Rev 13(1):65–113.  https://doi.org/10.1080/08893110701433435 CrossRefGoogle Scholar
  10. Baur WH, Fischer RX (2003) On the significance of small deviations from higher symmetry. Min Mag 67:793–797.  https://doi.org/10.1180/0026461036740135 CrossRefGoogle Scholar
  11. Baur WH, Khan AA (1971) Rutile-type compounds. IV. SiO2, GeO2 and a comparison with other rutile-type structures. Acta Cryst B27:2133–2139.  https://doi.org/10.1107/S0567740871005466 CrossRefGoogle Scholar
  12. Bilc DI, Orlando R, Shaltaf R, Rignanese GM, Iñiguez J, Ghosez Ph (2008) Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides. Phys Rev B 77:165107–165113.  https://doi.org/10.1103/PhysRevB.77.165107 CrossRefGoogle Scholar
  13. Bolzan AA, Fong C, Kennedy BJ, Howard CJ (1997) Structural studies of rutile-type metal dioxides. Acta Cryst B53:373–380.  https://doi.org/10.1107/S0108768197001468 CrossRefGoogle Scholar
  14. Carpenter MA, Hemley RJ, Mao H (2000) High-pressure elasticity of stishovite and the P42/mnmPnnm phase transition. J Geophys Res 105(B5):10807–10816.  https://doi.org/10.1029/1999JB900419 CrossRefGoogle Scholar
  15. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco P, Llunell M, Causà M, Noël Y (2014) CRYSTAL14 user’s manual. University of Torino, TorinoGoogle Scholar
  16. Erdem I, Kart HH, Cagin T (2014) High pressure phase transitions in SnO2 polymorphs by first-principles calculations. J Alloy Compd 587:638–645.  https://doi.org/10.1016/j.jallcom.2013.10.238 CrossRefGoogle Scholar
  17. Gatti C, Casassa S (2014) TOPOND14 user’s manual. CNR-ISTM of Milano, MilanGoogle Scholar
  18. Grocholski B, Shim SH, Cottrell E, Prakapenka VB (2014) Crystal structure and compressibility of lead dioxide up to 140 GPa. Am Mineral 99:170–177.  https://doi.org/10.2138/am.2014.4596 CrossRefGoogle Scholar
  19. Haines J, Léger JM (1997) X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure: relationships between structure types and implications for other rutile-type dioxides. Phys Rev B 55(17):11144–11154.  https://doi.org/10.1103/PhysRevB.55.11144 CrossRefGoogle Scholar
  20. Haines J, Léger JM, Hoyau S (1995) Second-order rutile-type to CaCl2-type phase transition in β–MnO2 at high pressure. J Phys Chem Solids 56(7):965–973.  https://doi.org/10.1016/0022-3697(95)00037-2 CrossRefGoogle Scholar
  21. Haines J, Léger JM, Chateau C, Pereira AS (2000) Structural evolution of rutile-type and CaCl2-type germanium dioxide at high pressure. Phys Chem Miner 27:575–582.  https://doi.org/10.1007/s002690000092 CrossRefGoogle Scholar
  22. Haines J, Léger JM, Gorelli F, Klug DD, Tse JS, Li ZQ (2001) X-ray diffraction and theoretical studies of the high-pressure structures and phase transitions in magnesium fluoride. Phys Rev B 64:134110-10.  https://doi.org/10.1103/PhysRevB.64.134110 CrossRefGoogle Scholar
  23. Hassan FEH, Moussawi S, Noun W, Salameh C, Postnikov AV (2013) Theoretical calculations of the high-pressure phases of SnO2. Comput Mater Sci 72:86–92.  https://doi.org/10.1016/j.commatsci.2013.02.011 CrossRefGoogle Scholar
  24. Hazen RM, Finger LW (1981) Bulk moduli and high-pressure crystal structures of rutile-type compounds. J Phys Chem Solids 42:143–151.  https://doi.org/10.1016/0022-3697(81)90074-3 CrossRefGoogle Scholar
  25. Kanchana V, Vaitheeswaran G, Rajagopalan M (2003) High-pressure structural phase transitions in magnesium fluoride studied by electronic structure calculations. J Alloy Compd 352:60–65.  https://doi.org/10.1016/S0925-8388(02)01158-1 CrossRefGoogle Scholar
  26. Klotz S, Chervin J-C, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:075413–075417.  https://doi.org/10.1088/0022-3727/42/7/075413 CrossRefGoogle Scholar
  27. Kondrashev YD, Zaslavskii AI (1951) The structure of the modifications of manganese oxide. Izvestiya Akademii Nauk SSSR 15:179–186Google Scholar
  28. Li Y-J, Wu X, Qin S, Wu Z-Y (2006) Ab initio studies of high-pressure transformations in β-MnO2. Chin J High Press Phys 3:285–290Google Scholar
  29. Liu Q-J, Ran Z, Liu F-S, Liu Z-T (2015) Phase transitions and mechanical stability of TiO2 polymorphs under high pressure. J Alloy Compd 631:192–201.  https://doi.org/10.1016/j.jallcom.2015.01.085 CrossRefGoogle Scholar
  30. Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Sol Earth 91:4673–4676.  https://doi.org/10.1029/JB091iB05p04673 CrossRefGoogle Scholar
  31. Marsh RE (1995) Some thoughts on choosing the correct space group. Acta Cryst B 51:897–907.  https://doi.org/10.1107/S0108768195008901 CrossRefGoogle Scholar
  32. Merli M, Pavese A (2018) Electron-density critical points analysis and catastrophe theory to forecast structure instability in periodic solid. Acta Cryst A 74:102–111.  https://doi.org/10.1107/S2053273317018381 CrossRefGoogle Scholar
  33. Miletich R, Allan DR, Kuhs WF (2000) High-pressure single-crystal techniques. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry. Reviews in mineralogy and geochemistry, vol 41. Mineralogical Society America and Geochemical Society, Washington DC, pp 445–519.  https://doi.org/10.2138/rmg.2000.41.14 CrossRefGoogle Scholar
  34. Nakagiri N, Manghnani MH, Kim YH, Ming LC (1987) Crystal structure of MgF2 and FeF2 under high pressure. In: Manghnani MH, Syono Y (eds) High-Pressure Research in Mineral Physics: a Volume in Honor of Syun‐iti Akimoto, vol 39. Geophysical Monograph Series. AGU, Washington DC, pp 281–287.  https://doi.org/10.1029/GM039p0281 CrossRefGoogle Scholar
  35. Ohno T, Tsubota T, Toyofuku M, Inaba R (2004a) Photocatalytic activity of a TiO2 photocatalyst doped with C4+ and S4+ ions having a rutile phase under visible light. Catal Lett 98(4):255–258.  https://doi.org/10.1007/s10562-004-8689-7 CrossRefGoogle Scholar
  36. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004b) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal A Gener 265:115–121.  https://doi.org/10.1016/j.apcata.2004.01.007 CrossRefGoogle Scholar
  37. Pavese (2005) About the relations between finite strain in non-cubic crystals and the related phenomenological P-V Equation of State. Phys Chem Miner 32:269–276.  https://doi.org/10.1007/s00269-005-0465-8 CrossRefGoogle Scholar
  38. Peintinger MF, Vilela Oliveira D, Bredow T (2013) Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. J Comput Chem 34:451–459.  https://doi.org/10.1002/jcc.23153 CrossRefGoogle Scholar
  39. Prakapenka VB, Dubrovinsky LS, Shen G, Rivers ML, Sutton SR, Dmitriev V, Weber HP, Le Bihan T (2003) α-PbO2-type high-pressure polymorph of GeO2. Phys Rev B 67:132101–132104.  https://doi.org/10.1103/PhysRevB.67.132101 CrossRefGoogle Scholar
  40. Range K-J, Rau F, Klement U, Heyns AM (1987) β-PtO2: high pressure synthesis of single crystals and structure refinement. Mater Res Bull 22:1541–1547.  https://doi.org/10.1016/0025-5408(87)90220-0 CrossRefGoogle Scholar
  41. Ross NL, Shu JF, Hazen RM, Gasparik T (1990) High-pressure crystal chemistry of stishovite. Am Mine 75:739–747Google Scholar
  42. Russo M (2007) Programma per la gestione della collezione DB_AMI 2007 (DB_AMI 2007: handling software for collections). Micro 5:13-16, Periodico AMI, ISSN 1724-7438, Devesi-Ciriè, TorinoGoogle Scholar
  43. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122.  https://doi.org/10.1107/S0108767307043930 CrossRefGoogle Scholar
  44. Shieh SR, Kubo A, Duffy TS, Prakapenka VB, Shen G (2006) High-pressure phases in SnO2 to 117 GPa. Phys Rev B 73:014105–014107.  https://doi.org/10.1103/PhysRevB.73.014105 CrossRefGoogle Scholar
  45. Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 81:454–456.  https://doi.org/10.1063/1.1493647 CrossRefGoogle Scholar
  46. Umebayashi T, Yamaki T, Yamamoto S, Miyashita A, Tanaka S, Sumita T, Asai K (2003) Sulfur-doping of rutile-titanium dioxide by ion implantation: photocurrent spectroscopy and first-principles band calculation studies. J Appl Phys 93:5156–5160.  https://doi.org/10.1063/1.1565693 CrossRefGoogle Scholar
  47. Vegard L (1916) Results of crystal analysis. Philos Mag 32(6):65–95CrossRefGoogle Scholar
  48. Wang Y, Doren DJ (2005) First-principles calculations on TiO2 doped by N, Nd, and vacancy. Solid State Commun 136(3):186–189.  https://doi.org/10.1016/j.ssc.2005.05.042 CrossRefGoogle Scholar
  49. Wyckoff RWG (1963) β phase of MnO2, rutile structure. Cryst Struct, 2nd edn. Interscience Publishers, New York, pp 239–444Google Scholar
  50. Zhao Y, Truhlar DG (2008) Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb-Oxford bound. J Chem Phys 128:184109-8.  https://doi.org/10.1063/1.2912068 CrossRefGoogle Scholar
  51. Živković A, Lukačević I (2016) Ferroelastic nature of high pressure phase transition in MgF2. J Alloy Compd 682:839–843.  https://doi.org/10.1016/j.jallcom.2016.05.059 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Earth Sciences DepartmentUniversity of TorinoTurinItaly
  2. 2.CrisDi Interdepartmental Center for CrystallographyTurinItaly
  3. 3.Earth and Sea DepartmentUniversity of PalermoPalermoItaly

Personalised recommendations