Experimental and calculated Raman spectra in Ca–Zn pyroxenes and a comparison between (CaxM2+1−x)M2+Si2O6 pyroxenes (M2+ = Mg, Co, Zn, Fe2+)

  • Mario TribaudinoEmail author
  • Claudia Stangarone
  • Claudia Gori
  • Luciana Mantovani
  • Danilo Bersani
  • Pier Paolo Lottici
Original Paper


The Raman spectra of the end member pyroxenes CaZnSi2O6 and Zn2Si2O6 are calculated by quantum mechanical modeling and compared with the experimental ones measured in synthetic (CaxZn1−x)ZnSi2O6 pyroxenes with x = 0, 0.2, 0.3, 0.5, 0.7, 1. The calculated spectra correctly predict the intensity and peak positions of the spectra recorded on the end members. The model provides also useful hints for the mode assignment at the intermediate compositions. The experimental peak positions are compared in (CaxM2+1−x)M2+Si2O6 pyroxenes, with M2+ = Mg, Co, Zn, Fe2+. These pyroxenes share a common charge and different mass and ionic radius; the relative contributions of the mass and ionic radius in the experimental spectrum are discussed in four of the most intense peaks. We found that the positions of the strongest peaks are related to the average bond distances of the polyhedra which most affect a given mode. Ca–Zn pyroxenes provide an exception, whereas the CaZnSi2O6 end member fits quite well in the bond-distance/peak positions relations found in other pyroxenes, and the same does not occur as Zn exchanges for Ca. Peak broadening occurs in Zn pyroxenes in intermediate compositions; it is related to the presence of polyhedral local configurations around Zn and Ca atoms in the M2 polyhedron. The broadening is higher in the ~ 1010 cm−1 peak (ν19), which, among the strongest peaks, shows the highest difference in the Raman wavenumber between end members. The different behaviours of Zn pyroxenes with respect to Mg, Co, and Fe2+ ones are likely related to the partially covalent bonding in the M2 cavity shown by Zn pyroxenes.


Pyroxene Raman spectroscopy Zn Peak position and crystal structure 



Helpful and constructive revisions by two anonymous reviewers significantly improved this paper and are acknowledged. This work was supported by MIUR funding PRIN2010-2011 (2010EARRRZ_005).

Supplementary material

269_2019_1043_MOESM1_ESM.xlsx (166 kb)
Supplementary file1 (XLSX 165 kb)
269_2019_1043_MOESM2_ESM.xlsx (158 kb)
Supplementary file2 (XLSX 157 kb)


  1. Aliatis I, Lambruschi E, Mantovani L, Bersani D, Andò S, Gatta GD, Gentile P, Salvioli-Mariani E, Prencipe M, Tribaudino M, Lottici PP (2015) A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8). J Raman Spectrosc 46:501–508CrossRefGoogle Scholar
  2. Doll K, Saunders VR, Harrison NM (2001) Analytical Hartree–Fock gradients for periodic systems. Int J Quantum Chem 82:1–31CrossRefGoogle Scholar
  3. Dovesi R, Orlando R, Erba A et al (2014) CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int J Quantum Chem 114:1287–1317CrossRefGoogle Scholar
  4. Gori C, Tribaudino M, Mantovani L, Delmonte D, Mezzadri F, Gilioli E, Calestani G (2015) Ca–Zn solid solutions in C2/c pyroxenes: synthesis, crystal structure and implications on Zn geochemistry. Am Mineral 100:2209–2218CrossRefGoogle Scholar
  5. Huang E, Chen CH, Huang T, Lin EH (2000) Xu Ji-An Raman spectroscopic characteristics of Mg–Fe–Ca pyroxenes. Am Mineral 85:473–479CrossRefGoogle Scholar
  6. Jaffe JE, Hess AC (1993) Hartree–Fock study of phase changes in ZnO at high pressure. Phys Rev B 48:7903–7909CrossRefGoogle Scholar
  7. Lambruschi E, Aliatis I, Mantovani L, Tribaudino M, Bersani D, Redhammer G, Lottici PP (2015) Raman spectroscopy of CaM2+Ge2O6 (M2+ = Mg, Mn, Fe Co, Ni, Zn) clinopyroxenes. J Raman Spectrosc 46:586–590CrossRefGoogle Scholar
  8. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  9. Mantovani L, Tribaudino M, Mezzadri F, Calestani G, Bromiley G (2013) The structure of (Ca, Co)CoSi2O6 pyroxenes and the Ca-M2+ substitution in (Ca,M2+)M2+Si2O6 pyroxenes (M2+ = Co, Fe, Mg). Am Mineral 98:1241–1252  CrossRefGoogle Scholar
  10. Mantovani L, Tribaudino M, Bertoni G, Salviati G, Bromiley G (2014) Solid solutions and phase transitions in (Ca, M2+)M2+Si2O6 pyroxenes (M2+ = Co, Fe, Mg). Am Mineral 99:704–711CrossRefGoogle Scholar
  11. Mantovani L, Tribaudino M, Aliatis I, Lambruschi E, Bersani D, Lottici PP (2015) Raman spectroscopy of CaCoSi2O6–Co2Si2O6 clinopyroxenes. Phys Chem Miner 42:179–189CrossRefGoogle Scholar
  12. Maschio L, Kirtman B, Salustro S, Zicovich-Wilson CM, Orlando R, Dovesi R (2013) Raman spectrum of pyrope garnet. A quantum mechanical simulation of frequencies, intensities, and isotope shifts. J Phys Chem A 117:11464–11471CrossRefGoogle Scholar
  13. Morimoto N, Nakajima Y, Syono Y, Akimoto S, Matsui Y (1975) Crystalstructure of pyroxene-type ZnSiO3 and ZnMgSi2O6. Acta Cryst B31:1041–1049CrossRefGoogle Scholar
  14. Ohashi Y, Finger LW (1976) The effect of Ca substitution on the structure of clinoenstatite. Carnegie Inst Wash Year Book 75:743–746Google Scholar
  15. Ohashi Y, Burnham CW, Finger LW (1975) The effect of Ca–Fe substitution on the clinopyroxene crystal structure. Am Mineral 60:423–434Google Scholar
  16. Pascale F, Zicovich-Wilson CM, López Gejo F, Civalleri B, Orlando R, Dovesi R (2004) The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. J Comput Chem 25:888–897CrossRefGoogle Scholar
  17. Prencipe M (2012) Simulation of vibrational spectra of crystals by ab initio calculations: An invaluable aid in the assignment and interpretation of the Raman signals. The case of jadeite (NaAlSi2O6). J Raman Spectrosc 43:1567–1569CrossRefGoogle Scholar
  18. Prencipe, M. (2018) Quantum mechanics in Earth sciences: a one-century-old story. Rend. Fis. Acc. Lincei, 1-21. Topical collection, Lincei Prize winners.
  19. Prencipe M, Tribaudino M, Pavese A, Hoser A, Reehuis M (2000) Single-crystal neutron-diffraction investigation of diopside at 10 K. Can Mineral 38:183–189CrossRefGoogle Scholar
  20. Prencipe M, Mantovani L, Tribaudino M, Bersani D, Lottici PP (2012) The Raman spectrum of diopside: a comparison between ab initio calculated and experimentally measured frequencies. Eur J Mineral 24:457–464CrossRefGoogle Scholar
  21. Ross NL, Reynard B (1999) The effect of iron on the P21/c to C2/c transition in (Mg, Fe)SiO3 clinopyroxenes. Eur J Mineral 11:585–589CrossRefGoogle Scholar
  22. Rutstein MS, White WB (1971) Vibrational spectra of high-calcium pyroxenes and pyroxenoids. Am Mineral 56:877–887Google Scholar
  23. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767CrossRefGoogle Scholar
  24. Stangarone C, Tribaudino M, Prencipe M, Lottici PP (2016) Raman modes in Pbca enstatite (Mg2Si2O6): an assignment by quantum mechanical calculation to interpret experimental results. J Raman Spectrosc 47:1247–1258CrossRefGoogle Scholar
  25. Stangarone C, Böttger U, Bersani D, Tribaudino M, Prencipe M (2017) Ab initio simulations and experimental Raman spectra of Mg2SiO4 forsterite to simulate Mars surface environmental conditions. J Raman Spectrosc 48:1528–1535CrossRefGoogle Scholar
  26. Tribaudino M (2000) A transmission electron microscope investigation on the C2/c -P21/c phase transition in clinopyroxenes along the diopside-enstatite (CaMgSi2O6-Mg2Si2O6) join. Am Mineral 85:707–715CrossRefGoogle Scholar
  27. Tribaudino M, Benna P, Bruno E (1989) Average structure and M2 site configurations in C2/c clinopyroxenes along the Di-En join. Contr Mineral Petrol 103:452–456CrossRefGoogle Scholar
  28. Tribaudino M, Nestola F, Cámara F, Domeneghetti MC (2002) The high temperature P21/c-C2/c phase transition in Fe-free pyroxene (Ca0.15Mg1.85Si2O6): structural and thermodynamic behavior. Am Mineral 87:648–657CrossRefGoogle Scholar
  29. Tribaudino M, Mantovani L, Bersani D, Lottici PP (2012) Raman spectroscopy of (Ca, Mg)MgSi2O6 clinopyroxenes. Am Mineral 97:1339–1347CrossRefGoogle Scholar
  30. Tribaudino M, Mantovani L, Mezzadri F, Calestani G, Bromiley G (2018) The structure of P21/c (Ca0.2Co0.8)CoSi2O6 pyroxene and the C2/c - P21/c phase transition in natural and synthetic pyroxenes. Mineral Mag 82:211–228CrossRefGoogle Scholar
  31. Valenzano L, Torres FJ, Doll K, Pascale F, Zicovich-Wilson CM, Dovesi R (2006) Ab Initio study of the vibrational spectrum and related properties of crystalline compounds; the case of CaCO3 calcite. Zeitsch Phys Chem 220:893–912Google Scholar
  32. Wang A, Jolliff BL, Haskin LA, Kuebler KE, Viskupic KM (2001) Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy. Am Mineral 86:790–806CrossRefGoogle Scholar
  33. Weinbruch S, Styrsa V, Muller WF (2003) Exsolution and coarsening in iron-free clinopyroxene during isothermal annealing. Geochim Cosmochim Acta 67:5071–5082CrossRefGoogle Scholar
  34. Wu Z, Cohen RE (2006) Generalized gradient approximation made more accurate for solids. Phys Rev B 73:235116CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
  2. 2.Department of Mathematical, Physical and Computer SciencesUniversity of ParmaParmaItaly
  3. 3.German Aerospace Center (DLR)BerlinGermany

Personalised recommendations