Advertisement

The system K2CO3–CaCO3 at 3 GPa: link between phase relations and variety of K–Ca double carbonates at ≤ 0.1 and 6 GPa

  • Anton V. Arefiev
  • Anton Shatskiy
  • Ivan V. Podborodnikov
  • Sergey V. Rashchenko
  • Artem D. Chanyshev
  • Konstantin D. Litasov
Original Paper
  • 27 Downloads

Abstract

The K2CO3–CaCO3 system is important both in materials science as a source of new nonlinear optical materials and in the Earth science as a sub-system modeling phase relations in fluxing component of mantle rocks responsible for the generation of deep-seated magmas. Existing data on phase relations in the K2CO3–CaCO3 system at ≤ 0.1 and 6 GPa show significant difference in intermediate compounds and, therefore, do not allow any interpolation between these pressures. Here, we report experimental results on melting and subsolidus phase relations in the system K2CO3–CaCO3 at 3 GPa and 800–1285 °C. At 800 °C, the system has two intermediate compounds: K2Ca(CO3)2, synthetic analog of mineral buetschliite, and K2Ca2(CO3)3. As temperature increases to 850 °C, a third intermediate compound, K2Ca3(CO3)4, appears. The calcite–aragonite transition boundary is located at 962 ± 12 °C. Maximum solid solution of CaCO3 in K2CO3 is 18 mol% at 950 °C. The K carbonate–K2Ca(CO3)2 eutectic is established near 970 °C and 56 mol% K2CO3. The melting point of K2CO3 corresponds to 1275 ± 25 °C. K2Ca(CO3)2 melts incongruently at 988 ± 12 °C to produce K2Ca2(CO3)3 and a liquid containing 53 mol% K2CO3. K2Ca2(CO3)3 melts congruently just above 1100 °C. The K2Ca2(CO3)3–K2Ca3(CO3)4 eutectic is situated near 1085 °C and 29 mol% K2CO3. K2Ca3(CO3)4 melts incongruently at 1100 °C to produce calcite and a liquid containing 28 mol% K2CO3. Considering our present results and previous data on the K2CO3–CaCO3 system, a range of K-Ca double carbonates changes upon pressure and temperature increase in the following sequence: K2Ca(CO3)2 (buetschliite), K2Ca2(CO3)3 (≤ 0.1 GPa; < 547 °C) → K2Ca(CO3)2 (fairchildite), K2Ca2(CO3)3 (≤ 0.1 GPa; 547–835 °C) → K2Ca(CO3)2 (buetschliite), K2Ca2(CO3)3, K2Ca3(CO3)4 (ordered) (3 GPa; 800–1100 °C) → K8Ca3(CO3)7, K2Ca(CO3)2 (buetschliite), K2Ca3(CO3)4 (disordered) (6 GPa; 900–1300 °C).

Keywords

High-pressure K–Ca carbonates Buetschliite Fairchildite Raman Phase relations 

Notes

Acknowledgements

This work was financially supported by Russian Science Foundation (project No 14-17-00609-П). The SEM and EDS studies of experimental samples were performed in the Analytical Center for multi-elemental and isotope research SB RAS. We are grateful to two anonymous referees for constructive reviews, T. Tsuchiya for editorial handling, and N.S. Karmanov, A.T. Titov, and I.N. Kupriyanov for help in analytical work.

References

  1. Antao SM, Hassan I (2009) The orthorhombic structure of CaCO3, SrCO3, PbCO3 and BaCO3: Linear structural trends. Can Mineral 47(5):1245–1255CrossRefGoogle Scholar
  2. Arceo HB, Glasser FP (1995) Fluxing reactions of sulfates and carbonates in cement clinkering II. The system CaCO3–K2CO3. Cement Concrete Res 25(2):339–344CrossRefGoogle Scholar
  3. Arefiev AV, Shatskiy A, Podborodnikov IV, Rashchenko SV, Litasov KD (under review) The system K2CO3-MgCO3 at 3 GPa. High Press ResGoogle Scholar
  4. Brey GP, Bulatov VK, Girnis AV (2011) Melting of K-rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle. Chem Geol 281(3–4):333–342CrossRefGoogle Scholar
  5. Buzgar N, Apopei AI (2009) The Raman study of certain carbonates. Analele Stiintifice de Universitatii AI Cuza din Iasi. Geologie 55(2):97 (Section 2)Google Scholar
  6. Cancarevic Z, Schon JC, Jansen M (2006) Alkali metal carbonates at high pressure. Zeitschrift Fur Anorg Allg Chem 632(8–9):1437–1448CrossRefGoogle Scholar
  7. Cooper AF, Gittins J, Tuttle OF (1975) The system Na2CO3–K2CO3–CaCO3 at 1 kilobar and its significance in carbonatite petrogenesis. Am J Sci 275(5):534–560CrossRefGoogle Scholar
  8. Effenberger H, Langhof H (1984) On the aplanarity of the CO3 group in buetschliite, dipotassium calcium dicarbonate, K2Ca(CO3)2: a further refinement of the atomic arrangement. Acta Crystallogr Sect C Cryst Struct Commun 40(7):1299–1300CrossRefGoogle Scholar
  9. Eitel W, Skaliks W (1929) Ueber einige doppelcarbonate der alkalien und erdalkalien. Zeitschrift Für Anorg Allg Chem 183(1):263–286CrossRefGoogle Scholar
  10. Gavryushkin PN, Bakakin VV, Bolotina NB, Shatskiy AF, Seryotkin YV, Litasov KD (2014) Synthesis and crystal structure of new carbonate Ca3Na2(CO3)4 homeotypic with orthoborates M3Ln2(BO3)4 (M = Ca, Sr, and Ba). Cryst Growth Design 14(9):4610–4616CrossRefGoogle Scholar
  11. Gavryushkin P, Rashenko S, Shatskiy A, Litasov K, Ancharov A (2016a) Compressibility and phase transitions of potassium carbonate at pressures below 30 kbar. J Struct Chem 57(7):1485–1488CrossRefGoogle Scholar
  12. Gavryushkin PN, Behtenova A, Popov ZI, Bakakin VV, Likhacheva AY, Litasov KD, Gavryushkin A (2016b) Toward analysis of structural changes common for alkaline carbonates and binary compounds: prediction of high-pressure structures of Li2CO3, Na2CO3, and K2CO3. Cryst Growth Des 16(10):5612–5617CrossRefGoogle Scholar
  13. Gavryushkin PN, Thomas VG, Bolotina NB, Bakakin VV, Golovin AV, Seryotkin YV, Fursenko DA, Litasov KD (2016c) Hydrothermal synthesis and structure solution of Na2Ca(CO3)2: “Synthetic Analogue” of mineral nyerereite. Cryst Growth Des 16(4):1893–1902CrossRefGoogle Scholar
  14. Giuliani A, Kamenetsky VS, Phillips D, Kendrick MA, Wyatt BA, Goemann K (2012) Nature of alkali-carbonate fluids in the sub-continental lithospheric mantle. Geology 40(11):967–970CrossRefGoogle Scholar
  15. Golovin A, Korsakov A, Gavryushkin P, Zaitsev A, Thomas V, Moine B (2017) Raman spectra of nyerereite, gregoryite, and synthetic pure Na2Ca(CO3)2: diversity and application for the study micro inclusions. J Raman Spectrosc 48(11):1559–1565CrossRefGoogle Scholar
  16. Golubkova A, Merlini M, Schmidt MW (2015) Crystal structure, high-pressure, and high-temperature behavior of carbonates in the K2Mg(CO3)2–Na2Mg(CO3)2 join. Am Miner 100(11–12):2458–2467CrossRefGoogle Scholar
  17. Grassi D, Schmidt MW (2011) The melting of carbonated pelites from 70 to 700 km depth. J Petrol 52(4):765–789CrossRefGoogle Scholar
  18. Hernlund J, Leinenweber K, Locke D, Tyburczy JA (2006) A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. Am Miner 91(2–3):295–305CrossRefGoogle Scholar
  19. Idemoto Y, Richardson JW, Koura N, Kohara S, Loong CK (1998) Crystal structure of (LixK1-x)2CO3 (x = 0, 0.43, 0.5, 0.62, 1) by neutron powder diffraction analysis. J Phys Chem Solids 59(3):363–376CrossRefGoogle Scholar
  20. Jago BC, Gittins J (1991) The role of fluorine in carbonatite magma evolution. Nature 349(6304):56–58CrossRefGoogle Scholar
  21. Kröger C, Illner KW, Graeser W (1943) Über die systeme alkalioxyd CaO–Al2O3–SiO2–CO2. XI. Die reaktionsdrucke im system K2O-CaO–SiO2–CO2. Zeitschrift Fur Anorg Allg Chem 251(3):270–284CrossRefGoogle Scholar
  22. Lavrent’ev YG, Karmanov N, Usova L (2015) Electron probe microanalysis of minerals: microanalyzer or scanning electron microscope? Russ Geol Geophys 56(8):1154–1161CrossRefGoogle Scholar
  23. Li Z (2015) Melting and structural transformations of carbonates and hydrous phases in Earth’s mantle. Dissertation, Department of Geology, University of Michigan, USA, pp 126Google Scholar
  24. Litasov KD (2011) Physicochemical conditions for melting in the Earth’s mantle containing a C–O–H fluid (from experimental data). Russ Geol Geophys 51(5):475–492CrossRefGoogle Scholar
  25. Liu Q, Tenner TJ, Lange RA (2007) Do carbonate liquids become denser than silicate liquids at pressure? Constraints from the fusion curve of K2CO3 to 3.2 GPa. Contrib Miner Petrol 153(1):55–66CrossRefGoogle Scholar
  26. Maslen E, Streltsov V, Streltsova N, Ishizawa N (1995) Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3. Acta Crystallogr Sect B Struct Sci 51(6):929–939CrossRefGoogle Scholar
  27. McKie D (1990) Subsolidus phase relations in the system K2Ca(CO3)2–Na2Mg(CO3)2 at 1 kbar: the fairchilditess-buetschliite-eitelite eutectoid. Am Miner 75(9–10):1147–1150Google Scholar
  28. Mitchell RH, Kjarsgaard BA (2011) Experimental studies of the system Na2CO3-CaCO3-MgF2 at 0–1 GPa: Implications for the differentiation and low-temperature crystallization of natrocarbonatite. J Petrol 52(7–8):1265–1280CrossRefGoogle Scholar
  29. Niggli P (1916) Gleichgewichte zwischen TiO2 und CO2, sowie SiO2 und CO2 in alkali-, kalk-alkali und alkali-aluminatschmelzen. Zeitschrift Fur Anorg Allg Chem 98(1):241–326CrossRefGoogle Scholar
  30. Pabst A (1974) Synthesis, properties, and structure of K2Ca(CO3)2, buetschliite. Am Miner 59(3–4):353–358Google Scholar
  31. Pertlik F (1981) Structural investigations of synthetic fairchüdite, K2Ca(CO3)2. Zeitschrift Für Kristallogr 157:199–205Google Scholar
  32. Ragone SE, Datta RK, Roy DM, Tuttle OF (1966) The system potassium carbonate-magnesium carbonate. J Phys Chem 70(10):3360–3361CrossRefGoogle Scholar
  33. Rashchenko SV, Bakakin VV, Shatskiy AF, Gavryushkin PN, Seryotkin YV, Litasov KD (2017) Noncentrosymmetric Na2Ca4(CO3)5 carbonate of “M13M23XY3Z” structural type and affinity between borate and carbonate structures for design of new optical materials. Cryst Growth Des 17(11):6079–6084CrossRefGoogle Scholar
  34. Rashchenko SV, Shatskiy AF, Arefiev AV, Seryotkin YV, Litasov KD (2018) Na4Ca(CO3)3: a novel carbonate analog of borate optical materials. Cryst Eng Comm.  https://doi.org/10.1039/c8ce00745d CrossRefGoogle Scholar
  35. Sharygin VV, Zhitova LM, Nigmatulina EN (2011) Fairchildite K2Ca(CO3)2 in phoscorites from Phalaborwa, South Africa: the first occurrence in alkaline carbonatite complexes. Russ Geol Geophys 52(2):208–219CrossRefGoogle Scholar
  36. Shatskiy A, Litasov KD, Terasaki H, Katsura T, Ohtani E (2010) Performance of semi-sintered ceramics as pressure-transmitting media up to 30 GPa. High Press Res 30(3):443–450CrossRefGoogle Scholar
  37. Shatskiy A, Gavryushkin PN, Sharygin IS, Litasov KD, Kupriyanov IN, Higo Y, Borzdov YM, Funakoshi K, Palyanov YN, Ohtani E (2013a) Melting and subsolidus phase relations in the system Na2CO3–MgCO3 + -H2O at 6 GPa and the stability of Na2Mg(CO3)2 in the upper mantle. Am Miner 98(11–12):2172–2182CrossRefGoogle Scholar
  38. Shatskiy A, Sharygin IS, Gavryushkin PN, Litasov KD, Borzdov YM, Shcherbakova AV, Higo Y, Funakoshi K, Palyanov YN, Ohtani E (2013b) The system K2CO3–MgCO3 at 6 GPa and 900–1450 ºC. Am Mineral 98(8–9):1593–1603CrossRefGoogle Scholar
  39. Shatskiy A, Sharygin IS, Litasov KD, Borzdov YM, Palyanov YN, Ohtani E (2013c) New experimental data on phase relations for the system Na2CO3–CaCO3 at 6 GPa and 900–1400 ºC. Am Mineral 98(11–12):2164–2171CrossRefGoogle Scholar
  40. Shatskiy A, Borzdov YM, Litasov KD, Sharygin IS, Palyanov YN, Ohtani E (2015a) Phase relationships in the system K2CO3–CaCO3 at 6 GPa and 900–1450 °C. Am Miner 100(1):223–232CrossRefGoogle Scholar
  41. Shatskiy A, Gavryushkin PN, Litasov KD, Koroleva ON, Kupriyanov IN, Borzdov YM, Sharygin IS, Funakoshi K, Palyanov YN, Ohtani E (2015b) Na–Ca carbonates synthesized under upper-mantle conditions: Raman spectroscopic and X-ray diffraction studies. Eur J Mineral 27:175–184CrossRefGoogle Scholar
  42. Shatskiy A, Litasov KD, Ohtani E, Borzdov YM, Khmelnicov AI, Palyanov YN (2015c) Phase relations in the K2CO3–FeCO3 and MgCO3–FeCO3 systems at 6 GPa and 900–1700 °C. Eur J Mineral 27(4):487–499CrossRefGoogle Scholar
  43. Shatskiy A, Rashchenko SV, Ohtani E, Litasov KD, Khlestov MV, Borzdov YM, Kupriyanov IN, Sharygin IS, Palyanov YN (2015d) The system Na2CO3–FeCO3 at 6 GPa and its relation to the system Na2CO3–FeCO3–MgCO3. Am Miner 100(1):130–137CrossRefGoogle Scholar
  44. Shatskiy AF, Litasov KD, Palyanov YN (2015e) Phase relations in carbonate systems at pressures and temperatures of lithospheric mantle: review of experimental data. Russ Geol Geophys 56:113–142CrossRefGoogle Scholar
  45. Shatskiy A, Litasov KD, Palyanov YN, Ohtani E (2016a) Phase relations on the K2CO3–CaCO3–MgCO3 join at 6 GPa and 900–1400 °C: implication for incipient melting in carbonated mantle domains. Am Miner 101(2):437–447CrossRefGoogle Scholar
  46. Shatskiy A, Litasov KD, Sharygin IS, Egonin IA, Mironov AM, Palyanov YN, Ohtani E (2016b) The system Na2CO3–CaCO3–MgCO3 at 6 GPa and 900–1250 °C and its relation to the partial melting of carbonated mantle. High Press Res 36(1):23–41CrossRefGoogle Scholar
  47. Shatskiy A, Podborodnikov IV, Arefiev AV, Litasov KD, Chanyshev AD, Sharygin IS, Karmanov NS, Ohtani E (2017) Effect of alkalis on the reaction of clinopyroxene with Mg-carbonate at 6 GPa: Implications for partial melting of carbonated lherzolite. Am Miner 102(9):1934–1946CrossRefGoogle Scholar
  48. Shatskiy A, Podborodnikov IV, Arefiev AV, Minin DA, Chanyshev AD, Litasov KD (2018) Revision of the CaCO3–MgCO3 phase diagram at 3 and 6 GPa. Am Miner 103(3):441–452CrossRefGoogle Scholar
  49. Suzuki A, Ohtani E, Funakoshi K, Terasaki H, Kubo T (2002) Viscosity of albite melt at high pressure and high temperature. Phys Chem Miner 29(3):159–165CrossRefGoogle Scholar
  50. Wang M, Liu Q, Inoue T, Li B, Pottish S, Wood J, Yang C, Tao R (2016) The K2CO3 fusion curve revisited: New experiments at pressures up to 12 GPa. J Mineral Petrol Sci 111(4):241–251CrossRefGoogle Scholar
  51. Winbo C, Boström D, Göbbels M (1997) Crystal structure of the double carbonate K2Ca2(CO3)3. Acta Chem Scand 51:387–391CrossRefGoogle Scholar
  52. Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J Appl Crystallogr 43(5):1126–1128CrossRefGoogle Scholar
  53. Wyllie PJ, Tuttle OF (1960) The system CaO–CO2–H2O and the origin of carbonatites. J Petrol 1(1):1–46CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anton V. Arefiev
    • 1
    • 2
  • Anton Shatskiy
    • 1
    • 2
  • Ivan V. Podborodnikov
    • 1
    • 2
  • Sergey V. Rashchenko
    • 1
    • 2
  • Artem D. Chanyshev
    • 1
    • 2
  • Konstantin D. Litasov
    • 1
    • 2
  1. 1.Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of ScienceNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations