Advertisement

Physics and Chemistry of Minerals

, Volume 46, Issue 3, pp 203–213 | Cite as

On the greenish-yellow color of natural Brazilian titanite

  • E. L. TolentinoJr.
  • C. H. Dias
  • M. L. S. C. ChavesEmail author
  • K. Krambrock
  • M. V. B. Pinheiro
Original Paper
  • 98 Downloads

Abstract

Natural greenish-yellow titanites from two localities in Brazil (Bananal/Capelinha, MG and Xambioá, TO) were characterized by electron paramagnetic resonance (EPR) and optical absorption. Along with vanadyl ions (VO2+) substituting Ti4+, two other paramagnetic centers were identified: the Fe3+ and the Mn2+. For the VO2+, the principal values and orientations of the g and A tensors were derived from a careful analysis of the angular dependence of the EPR spectra. The obtained results, although different to previously reported data, still support the model for the VO2+ bonds to the nearest oxygen (O1) in the TiO6-distorted octahedra. In addition, the titanite optical absorption spectra were analyzed, and the yellow color was ascribed to Fe3+ ↔ O2− ligand–metal charge transfer transitions (LMCT) in the near-ultraviolet, extending to the violet and blue spectral ranges. The VO2+ center seen by EPR was in low concentration and had no visible effect on the color. Finally, γ-irradiation up to 200 kGy and thermal treatments in oxidizing/reducing atmospheres up to 600–700 °C also had no big influence on the dominant yellow color.

Keywords

Titanite Color EPR Vanadyl Iron 

Notes

Acknowledgements

The authors are grateful to CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico and FAPEMIG—Fundação de Amparo à Pesquisa do Estado de Minas Gerais for grants and financial support.

References

  1. Balitsky VS, Balitskaya OV (1986) The amethyst-citrine dichromatism in quartz and its origin. Phys Chem Miner 13:415–421Google Scholar
  2. Beirau T, Mihailova B, Malcherek T, Paulmann C, Bismayer U, Groat LA (2014) Temperature-induced P21/c to C2/c phase transition in partially amorphous (metamict) titanite revealed by Raman spectroscopy. Can Mineral 52:91–100CrossRefGoogle Scholar
  3. Burns RG (1993) Mineralogical applications of crystal field theory, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Cassedanne JP, Cassedanne JO (1971) Note sur le gisement de sphène du Campo doBoa (Municipe de Capelinha–État de Minas Gerais). An Acad Bras Cienc 43:399–405Google Scholar
  5. Chaves MLSC, Tolentino EL Jr, Dias CHD, Romano AW (2017) Geologia, mineralogia, inclusões fluidas e gênese dos depósitos de titanita-epidoto de Capelinha, Minas Gerais. Geologia USP Série Científica 17:3–18CrossRefGoogle Scholar
  6. De Biasi RS, Fernandes AAR (1984) Measurement of small concentration of Cr and Mn in MgO using EPR. J Am Ceram Soc 67:C173–C175CrossRefGoogle Scholar
  7. Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, vol 2. Longman Scientific & Technical, Hong KongGoogle Scholar
  8. Dias LN, Pinheiro MVB, Krambrock K (2009) Radiation-induced defects in euclase: formation of O hole and Ti3+ electron centers. Phys Chem Miner 36:519–525CrossRefGoogle Scholar
  9. Dias LN, Pinheiro MVB, Moreira RL, Krambrock K, Guedes KJ, Menezes Filho LAD, Karfunkel J, Schnellrath J, Scholz R (2011) Spectroscopic characterization of transition metal impurities in natural montebrasite/amblygonite. Am Mineral 96:42–52CrossRefGoogle Scholar
  10. Farrell EF, Newnham RE (1965) Crystal-field spectra of chrysoberyl alexandrite, peridot andsinhalite. Am Miner 50:1972–1981Google Scholar
  11. Faye GH, Manning PG, Gosselin JR, Tremblay RJ (1974) The optical absorption spectra of tourmaline; importance of charge-transfer processes. Can Mineral 12:370–380Google Scholar
  12. Fritsch E, Rossman GR (1988) An update on color in gems. Part 2: colors involving multiple atoms and color centers. Gems Gemol 24:3–15CrossRefGoogle Scholar
  13. Frost BR, Chamberlain KR, Schumacher JC (2001) Sphene (titanite): phase relations and role as a geochronometer. ChemGeol 172:131–148Google Scholar
  14. Ghose S, Ito Y, Hatch DM (1991) Paraelectric-antiferroelectric phase transition in titanite, CaTiSiO5. Phys Chem Miner 17:591–603CrossRefGoogle Scholar
  15. Higgins JB, Ribbe PH (1976) The crystal chemistry and space groups of natural and synthetic titanites. Am Mineral 61:878–888Google Scholar
  16. Hollabaugh CL, Foit FF (1984) The crystal structure of an Al-rich titanite from Grisons, Switzerland. Am Mineral 69:725–732Google Scholar
  17. Holuj F, Manoogian A (1968) EPR of Mn++ in spodumene. II. Heated crystals. Can J Phys 46:303–306CrossRefGoogle Scholar
  18. Jaffe HW (1947) Reexamination of sphene (titanite). Am Mineral 32:637–642Google Scholar
  19. Klein C (2002) Manual of mineral science. Wiley, New YorkGoogle Scholar
  20. Klein C, Hurlbut CS (1999) Manual of mineralogy. Wiley, New YorkGoogle Scholar
  21. Krambrock K, Pinheiro MVB, Guedes KJ, Medeiros SM, Schweizer S, Spaeth JM (2004) Correlation of irradiation-induced yellow color with the Ohole center in tourmaline. Phys Chem Miner 31:168–175CrossRefGoogle Scholar
  22. Krambrock K, Guedes KJ, Pinheiro MVB (2008) Chromium and vanadium impurities in natural green euclase and their relation to the color. Phys Chem Miner 35:409–415CrossRefGoogle Scholar
  23. Kunz M, Xirouchakis D, Lindsley DH, Hausermann D (1996) High-pressure phase transition in titanite (CaTiOSiO4). Am Mineral 81:1527–1530CrossRefGoogle Scholar
  24. Lehmann G (1978) Solid-state photochemistry—a method of generating unusual valence states. Angew Chem Ger Edit 17:89–97CrossRefGoogle Scholar
  25. Marfunin AS, Bershov LS, Mineeva RM (1966) La résonance paramagnétique électronique de l’ion VO2+ dans le sphène et l’apophyllite et de l’ionMn2+ dans la tremolite, l’apophyllite et la scheelite. B Soc Fr Mineral Cr 89:177–183Google Scholar
  26. McGavin DG, Palmer RA, Tennant WC, Devine SD (1982) Use of ultrasonically modulated electron resonance to study S-state ions in mineral crystal: Mn2+ and Fe3+ in tremolite. Phys Chem Miner 8:200–205CrossRefGoogle Scholar
  27. Salje E, Schmidt C, Bismayer U (1993) Structural phase transition in titanite, CaTiSiO5: a Raman spectroscopic study. Phys Chem Miner 19:502–506CrossRefGoogle Scholar
  28. Sarma KBN, Runny BJ, Lakshman SVJ (1982) Absorption spectra of Ti3+ in titanite. Proc Indian Nat Sci Acad 48:636–641Google Scholar
  29. Schmetzer K, Bosshard G, Hänni HA (1982) Naturfarbene und behandeltegelbe und orange-braune Sapphire. Zeitschrift der Deutschen Gemmologischen Gesellschaft 31:265–279Google Scholar
  30. Shaffer JS, Farach HA, Poole CP Jr (1976) Electron spin resonance study of manganese-doped spinel. Phys Rev B13:1869–1875CrossRefGoogle Scholar
  31. Silva DN, Guedes KJ, Pinheiro MVB, Spaeth JM, Krambrock K (2005) The microscopic structure of the oxygen–aluminium hole center in natural and neutron irradiated blue topaz. Phys Chem Miner 32:436–441CrossRefGoogle Scholar
  32. Spaeth JM, Niklas JR, Bartram RH (1992) Structural analysis of point defects in solids: an introduction to multiple magnetic resonance spectroscopy. Springer, New YorkCrossRefGoogle Scholar
  33. Speer JA, Gibbs GV (1976) The crystal structure of synthetic titanite, CaTiOSiO4, and the domain textures of natural titanites. Am Mineral 61:238–247Google Scholar
  34. Taylor M, Brown GE (1976) High-temperature structural study of the P21/a<--> A2/a phase transition in synthetic titanite, CaTiSiO5. Am Mineral 61:435–447Google Scholar
  35. Vance ER, Metson JB (1985) Radiation damage in natural titanites. Phys Chem Miner 12:255–260CrossRefGoogle Scholar
  36. Vassilikou-Dova AB (1993) EPR-determined site distributions of low concentrations of transition-metal ions in minerals: review and predictions. Am Mineral 78:49–55Google Scholar
  37. Vassilikou-Dova AB, Lehmann G (1988) EPR of V4+ and Fe3+ in titanites. Phys Chem Miner 15:559–563CrossRefGoogle Scholar
  38. Wood DL, Nassau K (1968) Characterization of beryl and emerald by visible and infrared absorption spectroscopy. Am Mineral 53:777–800Google Scholar
  39. Zachariasen WH (1930) II. The crystal structure of titanite. Z Krist Cryst Mater 73:7–16Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Geociências (IGC)Universidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.Departamento de Física, Instituto de Ciências Exatas (ICEx)Universidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil

Personalised recommendations