Physics and Chemistry of Minerals

, Volume 45, Issue 3, pp 293–302 | Cite as

First-principles calculations of high-pressure iron-bearing monoclinic dolomite and single-cation carbonates with internally consistent Hubbard U

Original Paper
  • 114 Downloads

Abstract

It has been proposed that iron has a significant effect on the relative stability of carbonate phases at high pressures, possibly even stabilizing double-cation carbonates (e.g., dolomite) with respect to single-cation carbonates (e.g., magnesite, aragonite and siderite). X-ray diffraction experiments have shown that dolomite transforms at ~35 GPa to a high-pressure polymorph that is stable to decomposition; however, there has been disagreement on the structure of the high-pressure phase (Mao et al. in Geophys Res Lett 38, 2011. doi: 10.1029/2011GL049519; Merlini et al. in Proc Natl Acad Sci 109:13509–13514, 2012. doi: 10.1073/pnas.1201336109). Ab initio calculations interfaced with an evolutionary structure prediction algorithm demonstrated that a C2/c polymorph of pure CaMg(CO3)2 dolomite is more stable than previously reported structures (Solomatova and Asimow in Am Mineral 102:210–215, 2017, doi: 10.2138/am-2017-5830). In this study, we calculate the relative enthalpies up to 80 GPa for a set of carbonate phases including Fe-bearing solutions and endmembers, using the generalized gradient approximation and a Hubbard U parameter calculated through linear response theory to accurately characterize the electronic structure of Fe. When calculated with a constant U of 4 eV, the spin transition pressure of (Mg,Fe)CO3 agrees well with experiments, whereas an internally consistent U overestimates the spin transition pressure by ~50 GPa. However, whether we use constant or internally consistent U values, a higher iron concentration increases the stability field of dolomite C2/c with respect to single-cation carbonate assemblages, but iron-free dolomite is not stable with respect to single-cation carbonates at any pressure. Thus, high-pressure polymorphs of Fe-bearing dolomite could in fact represent an important reservoir for carbon storage within oxidized sections of Earth’s mantle.

Keywords

Dolomite Ankerite Siderite Carbonates High pressure Lower mantle 

Notes

Acknowledgements

We thank K. Jarolimek, H. Hsu and H.J. Kulik for discussions. We are thankful to N. Near-Ansari for assistance with compiling relevant software and managing libraries on FRAM, the high-performance computing cluster at Caltech. This work is supported by the U.S. National Science Foundation through award EAR-1551433.

References

  1. Anders E, Owen T (1977) Mars and earth: origin and abundance of volatiles. Science 198:453–465. doi: 10.1126/science.198.4316.453 CrossRefGoogle Scholar
  2. Badaut V, Zeller P, Dorado B, Schlegel ML (2010) Influence of exchange correlation on the symmetry and properties of siderite according to density-functional theory. Phys Rev B 82:205121. doi: 10.1103/PhysRevB.82.205121 CrossRefGoogle Scholar
  3. Becker H, Altherr R (1992) Evidence from ultra-high-pressure marbles for recycling of sediments into the mantle. Nature 358:745–748. doi: 10.1038/358745a0 CrossRefGoogle Scholar
  4. Bengtson A, Persson K, Morgan D (2008) Ab initio study of the composition dependence of the pressure-induced spin crossover in perovskite (Mg1−x, Fex)SiO3. Earth Planet Sci Lett 265:535–545. doi: 10.1016/Jepsl.2007.10.049 CrossRefGoogle Scholar
  5. Bizette H (1951) État expérimental de la question de l’antiferromagnétisme. J Phys Radium 12:161–169. doi: 10.1051/jphysrad:01951001203016100 CrossRefGoogle Scholar
  6. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953. doi: 10.1103/PhysRevB.50.17953 CrossRefGoogle Scholar
  7. Boulard E, Gloter A, Corgne A, Antonangeli D, Auzende AL, Perrillat JP, Guyot F, Fiquet G (2011) New host for carbon in the deep Earth. Proc Natl Acad Sci 108:5184–5187. doi: 10.1073/pnas.1016934108 CrossRefGoogle Scholar
  8. Boulard E, Menguy N, Auzende AL, Benzerara K, Bureau H, Antonangeli D, Corgne A, Morard G, Siebert J, Perrillat JP, Guyot F, Fiquet G (2012) Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. J Geophys Res Solid Earth 117:B02208CrossRefGoogle Scholar
  9. Boulard E, Pan D, Galli G, Liu Z, Mao WL (2015) Tetrahedrally coordinated carbonates in Earth’s lower mantle. Nat Commun. doi: 10.1038/ncomms7311 Google Scholar
  10. Brenker FE, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Kaminsky F (2006) CO2-recycling to the deep convecting mantle. Geochim Cosmochim Acta. doi: 10.1016/Jgca.2006.06.236 Google Scholar
  11. Brenker FE, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Joswig W, Kaminsky F (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett 260:1–9. doi: 10.1016/Jepsl.2007.02.038 CrossRefGoogle Scholar
  12. Brik MG (2011) First-principles calculations of structural, electronic, optical and elastic properties of magnesite MgCO3 and calcite CaCO3. Phys B 406(4):1004–1012. doi: 10.1016/j.physb.2010.12.049 CrossRefGoogle Scholar
  13. Buob A, Luth RW, Schmidt MW, Ulmer P (2006) Experiments on CaCO3–MgCO3 solid solutions at high pressure and temperature. Am Mineral 91:435–440. doi: 10.2138/Am2006.1910 CrossRefGoogle Scholar
  14. Burke K, Perdew JP, Wang Y (1998) Derivation of a generalized gradient approximation: the PW91 density functional. In: Dobson JF, Vignale G, Das MP (eds) Electronic density functional theory. Springer, Boston, pp 81–111CrossRefGoogle Scholar
  15. Cerantola V, Bykova E, Kupenko I, Merlini M, Ismailova L, McCammon C, Bykov M, Chumakov AI, Petitgirard S, Kantor I, Svitlyk V, Jacobs J, Hanfland M, Mezouar M, Prescher C, Rüffer R, Prakapenka VB, Dubrovinsky L (2017) Stability of iron-bearing carbonates in the deep Earth’s interior. Nat Commun. doi: 10.1038/ncomms15960 Google Scholar
  16. Cococcioni M, De Gironcoli S (2005) Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys Rev B 71:035105. doi: 10.1103/PhysRevB.71.035105 CrossRefGoogle Scholar
  17. Dorogokupets PI (2007) Equation of state of magnesite for the conditions of the Earth’s lower mantle. Geochem Int 45:561–568. doi: 10.1134/S0016702907060043 CrossRefGoogle Scholar
  18. Efthimiopoulos I, Jahn S, Kuras A, Schade U, Koch-Müller M (2017) Combined high-pressure and high-temperature vibrational studies of dolomite: phase diagram and evidence of a new distorted modification. Phys Chem Min. doi: 10.1007/s00269-017-0874-5 Google Scholar
  19. Eggler DH (1987) Solubility of major and trace elements in mantle metasomatic fluids: experimental constraints. In: Menzies MA, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press, London, pp 21–41Google Scholar
  20. Farfan G, Wang S, Ma H, Caracas R, Mao WL (2012) Bonding and structural changes in siderite at high pressure. Am Mineral 97:1421–1426. doi: 10.2138/am.2012.4001 CrossRefGoogle Scholar
  21. Fiquet G, Guyot F, Kunz M, Matas J, Andrault D, Hanfland M (2002) Structural refinements of magnesite at very high pressure. Am Mineral 87:1261–1265. doi: 10.2138/am-2002-8-927 CrossRefGoogle Scholar
  22. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502. doi: 10.1088/0953-8984/21/39/395502 CrossRefGoogle Scholar
  23. Gillet P, Biellmann C, Reynard B, McMillan P (1993) Raman spectroscopic studies of carbonates Part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys Chem Min 20:1–18. doi: 10.1007/BF00202245 Google Scholar
  24. Hammouda T, Andrault D, Koga K, Katsura T, Martin AM (2011) Ordering in double carbonates and implications for processes at subduction zones. Contrib Mineral Petro 161:439–450. doi: 10.1007/s00410-010-0541-z CrossRefGoogle Scholar
  25. Hirschmann MM, Dasgupta R (2009) The H/C ratios of earth’s near-surface and deep reservoirs, and consequences for deep earth volatile cycles. Chem Geol 262:4–16. doi: 10.1016/Jchemgeo.2009.02.008 CrossRefGoogle Scholar
  26. Hossain FM, Dlugogorski BZ, Kennedy EM, Belova IV, Murch GE (2010) Electronic, optical and bonding properties of MgCO3. Solid State Comm 150:848–851. doi: 10.1016/j.ssc.2010.02.008 CrossRefGoogle Scholar
  27. Hsu H, Huang SC (2016) Spin crossover and hyperfine interactions of iron in (Mg, Fe)CO3 ferromagnesite. Phys Rev B 94:060404. doi: 10.1103/PhysRevB.94.060404 CrossRefGoogle Scholar
  28. Hsu H, Blaha P, Cococcioni M, Wentzcovitch RM (2011) Spin-state crossover and hyperfine interactions of ferric iron in MgSiO3 perovskite. Phys Rev Lett 106:118501. doi: 10.1103/PhysRevLett106.118501 CrossRefGoogle Scholar
  29. Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427:60–63. doi: 10.1038/nature02181 CrossRefGoogle Scholar
  30. Jacobs IS (1963) Metamagnetism of siderite (FeCO3). J Appl Phys 34:1106–1107. doi: 10.1063/1.1729389 CrossRefGoogle Scholar
  31. Kaminsky F, Zakharchenko O, Davies R, Griffin W, Khachatryan-Blinova G, Shiryaev A (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib Mineral Petrol 140:734–753. doi: 10.1007/s004100000221 CrossRefGoogle Scholar
  32. Kato T, Enami M, Zhai M (1997) Ultra-high-pressure (UHP) marble and eclogite in the Su-Lu UHP terrane, eastern China. J Metamorph Geol 15:169–182. doi: 10.1111/J1525-1314.1997.00013.x CrossRefGoogle Scholar
  33. Katsura T, Tsuchida Y, Ito E, Yagi T, Utsumi W, Akimoto SI (1991) Stability of magnesite under the lower mantle conditions. Proc Jpn Acad Series B 67:57–60. doi: 10.2183/pjab.67.57 CrossRefGoogle Scholar
  34. Konstantinova E, Dantas SO, Barone PM (2006) Electronic and elastic properties of two-dimensional carbon planes. Phys Rev B 74:035417. doi: 10.1103/PhysRevB.74.035417 CrossRefGoogle Scholar
  35. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169. doi: 10.1103/PhysRevB.54.11169 CrossRefGoogle Scholar
  36. Kulik HJ, Cococcioni M, Scherlis DA, Marzari N (2006) Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys Rev Lett 97:103001. doi: 10.1103/PhysRevLett.97.103001 CrossRefGoogle Scholar
  37. Lavina B, Dera P, Downs RT, Prakapenka V, Rivers M, Sutton S, Nicol M (2009) Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophys Res Lett. doi: 10.1029/2009GL039652 Google Scholar
  38. Lavina B, Dera P, Downs RT, Yang W, Sinogeikin S, Meng Y, Shen G, Schiferl D (2010) Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Phys Rev B 82:064110. doi: 10.1103/PhysRevB.82.064110 CrossRefGoogle Scholar
  39. Lin JF, Struzhkin VV, Jacobsen S, Hu MY, Chow P, Kung J, Liu H, Mao H, Hemley RJ (2005) Spin transition of iron in magnesiowüstite in the Earth’s lower mantle. Nature 436:377–380. doi: 10.1038/nature03825 CrossRefGoogle Scholar
  40. Lin JF, Liu J, Jacobs C, Prakapenka VB (2012) Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron. Am Mineral 97:583–591. doi: 10.2138/Am2012.3961 CrossRefGoogle Scholar
  41. Liu J, Lin JF, Prakapenka VB (2015) High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Sci Rep. doi: 10.1038/srep07640 Google Scholar
  42. Mao Z, Armentrout M, Rainey E, Manning CE, Dera P, Prakapenka VB, Kavner A (2011) Dolomite III: a new candidate lower mantle carbonate. Geophys Res Lett. doi: 10.1029/2011GL049519 Google Scholar
  43. Martinez I, Zhang J, Reeder RJ (1996) In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature; evidence for dolomite breakdown to aragonite and magnesite. Am Mineral 81:611–624. doi: 10.2138/am-1996-5-608 CrossRefGoogle Scholar
  44. Mattila A, Pylkkanen T, Rueff JP, Huotari S, Vanko G, Hanfland M, Lehtinen M, Hamalainen K (2007) Pressure induced magnetic transition in siderite FeCO3 studied by X-ray emission spectroscopy. J Phys Condens Matter 19:386206. doi: 10.1088/0953-8984/19/38/386206 CrossRefGoogle Scholar
  45. Mattsson AE, Armiento R, Schultz PA, Mattsson TR (2006) Nonequivalence of the generalized gradient approximations PBE and PW91. Phys Rev B 73:195123. doi: 10.1103/PhysRevB.73.195123 CrossRefGoogle Scholar
  46. Medeiros SK, Albuquerque EL, Maia FF, Caetano EWS, Freire VN (2006) Structural, electronic, and optical properties of CaCO3 aragonite. Chem Phys Lett 430:293–296. doi: 10.1016/j.cplett.2006.08.133 CrossRefGoogle Scholar
  47. Merlini M, Crichton WA, Hanfland M, Gemmi M, Müller H, Kupenko I, Dubrovinsky L (2012) Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proc Natl Acad Sci 109:13509–13514. doi: 10.1073/pnas.1201336109 CrossRefGoogle Scholar
  48. Ming X, Wang XL, Du F, Yin JW, Wang CZ, Chen G (2012) First-principles study of pressure-induced magnetic transition in siderite FeCO3. J Alloys Compd 510:L1–L4. doi: 10.1016/Jjallcom.2011.08.079 CrossRefGoogle Scholar
  49. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188. doi: 10.1103/PhysRevB.13.5188 CrossRefGoogle Scholar
  50. Nagai T, Ishido T, Seto Y, Nishio-Hamane D, Sata N, Fujino K (2010) Pressure-induced spin transition in FeCO3-siderite studied by X-ray diffraction measurements. J Phys Conf Ser 215:012002. doi: 10.1088/1742-6596/215/1/012002 CrossRefGoogle Scholar
  51. Oganov AR, Glass CW (2006) Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys 124:244704. doi: 10.1063/1.2210932 CrossRefGoogle Scholar
  52. Oganov AR, Glass CW, Ono S (2006) High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet Sci Lett 241:95–103. doi: 10.1016/Jepsl.2005.10.014 CrossRefGoogle Scholar
  53. Oganov AR, Ono S, Ma Y, Glass CW, Garcia A (2008) Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth’s lower mantle. Earth Planet Sci Lett 273:38–47. doi: 10.1016/Jepsl.2008.06.005 CrossRefGoogle Scholar
  54. Oganov AR, Hemley RJ, Hazen RM, Jones AP (2013) Structure, bonding, and mineralogy of carbon at extreme conditions. Rev Mineral Geochem 75:47–77. doi: 10.2138/rmg.2013.75.3 CrossRefGoogle Scholar
  55. Ono S, Kikegawa T, Ohishi Y, Tsuchiya J (2005) Post-aragonite phase transformation in CaCO3 at 40 GPa. Am Mineral 90:667–671. doi: 10.2138/Am2005.1610 CrossRefGoogle Scholar
  56. Panchmatia PM, Sanyal B, Oppeneer PM (2008) GGA + U modeling of structural, electronic, and magnetic properties of iron porphyrin-type molecules. Chem Phys 343:47–60. doi: 10.1016/JchemPhys2007.10.030 CrossRefGoogle Scholar
  57. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. doi: 10.1103/PhysRevLett77.3865 CrossRefGoogle Scholar
  58. Persson K, Bengtson A, Ceder G, Morgan D (2006) Ab initio study of the composition dependence of the pressure-induced spin transition in the (Mg1−x, Fex)O system. Geophys Res Lett. doi: 10.1029/2006GL026621 Google Scholar
  59. Santillán J, Williams Q (2004a) A high-pressure infrared and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2-dolomite. Phys Earth Planet Int 143:291–304. doi: 10.1016/Jpepi.2003.06.007 CrossRefGoogle Scholar
  60. Santillán J, Williams Q (2004b) A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3. Am Mineral 89:1348–1352. doi: 10.2138/am-2004-8-925 CrossRefGoogle Scholar
  61. Santillán J, Williams Q, Knittle E (2003) Dolomite-II: a high-pressure polymorph of CaMg(CO3)2. Geophys Res Lett. doi: 10.1029/2002GL016018 Google Scholar
  62. Segall MD, Lindan PJ, Probert MA, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717. doi: 10.1088/0953-8984/14/11/301 CrossRefGoogle Scholar
  63. Shatskiy AF, Litasov KD, Palyanov YN (2015) Phase relations in carbonate systems at pressures and temperatures of lithospheric mantle: review of experimental data. Russ Geo Geophys 56:113–142. doi: 10.1016/Jrgg.2015.01.007 CrossRefGoogle Scholar
  64. Shcheka SS, Wiedenbeck M, Frost DJ, Keppler H (2006) Carbon solubility in mantle minerals. Earth Planet Sci Lett 245:730–742. doi: 10.1016/j.epsl.2006.03.036 CrossRefGoogle Scholar
  65. Shi H, Luo W, Johansson B, Ahuja R (2008) First-principles calculations of the electronic structure and pressure-induced magnetic transition in siderite FeCO3. Phys Rev B 78:155119. doi: 10.1103/PhysRevB.78.155119 CrossRefGoogle Scholar
  66. Sobolev NV, Shatsky VS (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343:742. doi: 10.1038/343742a0 CrossRefGoogle Scholar
  67. Solomatova NV, Asimow PD (2017) Ab initio study of the structure and stability of CaMg(CO3)2 at high pressure. Am Mineral 102:210–215. doi: 10.2138/am-2017-5830 CrossRefGoogle Scholar
  68. Solomatova NV, Jackson JM, Sturhahn W, Wicks JK, Zhao J, Toellner TS, Kalkan B, Steinhardt WM (2016) Equation of state and spin crossover of (Mg, Fe)O at high pressure, with implications for explaining topographic relief at the core-mantle boundary. Am Mineral 101:1084–1093. doi: 10.2138/am-2016-5510 CrossRefGoogle Scholar
  69. Speziale S, Milner A, Lee VE, Clark SM, Pasternak MP, Jeanloz R (2005) Iron spin transition in Earth’s mantle. Proc Natl Acad Sci 102:17918–17922. doi: 10.1073/pnas.0508919102 CrossRefGoogle Scholar
  70. Umemoto K, Wentzcovitch RM, Yonggang GY, Requist R (2008) Spin transition in (Mg, Fe)SiO3 perovskite under pressure. Earth Planet Sci Lett 276:198–206. doi: 10.1016/Jepsl.2008.09.025 CrossRefGoogle Scholar
  71. Walter MJ, Kohn SC, Araujo D, Bulanova GP, Smith CB, Gaillou E, Wang J, Steele A, Shirey SB (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 334:54–57. doi: 10.1126/science.1209300 CrossRefGoogle Scholar
  72. Wang X, Liou JG (1993) Ultra-high-pressure metamorphism of carbonate rocks in the Dabie Mountains, central China. J Metamorph Geol 11:575–588. doi: 10.1111/J1525-1314.1993.tb00173.x CrossRefGoogle Scholar
  73. Wang A, Pasteris JD, Meyer HO, Dele-Duboi ML (1996) Magnesite-bearing inclusion assemblage in natural diamond. Earth Planet Sci Lett 141:293–306. doi: 10.1016/0012-821X(96)00053-2 CrossRefGoogle Scholar
  74. Wirth R, Vollmer C, Brenker F, Matsyuk S, Kaminsky F (2007) Inclusions of nanocrystalline hydrous aluminium silicate “Phase Egg” in superdeep diamonds from Juina (Mato Grosso State, Brazil). Earth Planet Sci Lett 259:384–399. doi: 10.1016/Jepsl.2007.04.041 CrossRefGoogle Scholar
  75. Zucchini A, Comodi P, Nazzareni S, Hanfland M (2014) The effect of cation ordering and temperature on the high-pressure behaviour of dolomite. Phys Chem Min 41:783–793. doi: 10.1007/s00269-014-0691-z CrossRefGoogle Scholar
  76. Zucchini A, Prencipe M, Belmonte D, Comodi P (2017) Ab initio study of the dolomite to dolomite-II high-pressure phase transition. Eur J Mineral. doi: 10.1127/ejm/2017/0029-260 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Division of Geological and Planetary SciencesCaltechPasadenaUSA

Personalised recommendations