Advertisement

Prognosticators of Long-Term Outcomes of TNM Stage II Colorectal Cancer: Molecular Patterns or Clinicopathological Features

  • Tai-Chuan Kuan
  • Shih-Ching ChangEmail author
  • Jen-Kou Lin
  • Tzu-Chen Lin
  • Shung-Haur Yang
  • Jeng-Kae Jiang
  • Wei-Shone Chen
  • Huann-Sheng Wang
  • Yuan-Tzu Lan
  • Chun-Chi Lin
  • Hung-Hsin Lin
  • Sheng-Chieh Huang
Original Scientific Report
  • 5 Downloads

Abstract

Background

Patients with stage II colorectal cancer (CRC) have a higher risk of recurrence when they have certain risk factors, including clinical and pathological patterns. However, as the prognostic role of molecular patterns for stage II disease is still unclear, this study aimed to investigate it.

Methods

A total of 509 patients with stage II CRC were enrolled, and all clinical, pathological, and molecular data were collected. Molecular patterns included microsatellite instability (MSI); elevated microsatellite alterations at selected tetranucleotides (EMAST) status; and expression of RAS/RAF genes, genes of the APC pathway, and other gene mutations. The endpoints were oncological outcomes, including overall survival (OS), cancer-specific survival (CSS), disease-free survival (DFS), local recurrence (LR), and distant recurrence (DR). Cox regression analysis was used.

Results

Numerous molecular patterns influenced the oncological outcomes on univariate analysis, but no variable reached significance in LR. On multivariate analysis, a mucinous component (MC) > 50% (P < 0.01) was significant for OS and CSS. Lymphovascular invasion (LVI; P< 0.01), MC > 50% (P < 0.01), and EMAST-H (P = 0.02) significantly influenced DFS, whereas LVI (P < 0.01), MC > 50% (P < 0.01), and TP53 mutation (P = 0.02) were significant for DR.

Conclusions

In this study, MSI, EMAST, and RAS/RAF alterations did not influence the oncological outcomes. Overall, LVI and MC were two significant prognostic factors for DFS and DR. Thus, the histopathology, rather than the genes, plays a major role in the prognosis of patients with stage II CRC.

Notes

Authors’ contributions

Tai-Chuan Kuan and Shih-Ching Chang drafted/revised this article and analyzed the data. Shih-Ching Chang was involved in conception and design. Jen-Kou Lin, Tzu-Chen Lin, Shung-Haur Yang, Jeng-Kae Jiang, Wei-Shone Chen, Huann-Sheng Wang, Yuan-Tzu Lan, Chun-Chi Lin, Hung-Hsin Lin, and Sheng-Chieh Huang contributed to acquisition of data.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    The Department of Health t E Y (2013) The Department of Health. Healthy statistics: Cancer Registry Annual Report in Taiwan Area, Taiwan, R.O.CGoogle Scholar
  2. 2.
    Dienstmann R, Vermeulen L, Guinney J et al (2017) Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer 17(2):79–92CrossRefGoogle Scholar
  3. 3.
    Lin JK, Chang SC, Yang YC et al (2003) Loss of heterozygosity and DNA aneuploidy in colorectal adenocarcinoma. Ann Surg Oncol 10(9):1086–1094CrossRefGoogle Scholar
  4. 4.
    Chang SC, Lin JK, Lin TC et al (2005) Genetic alteration of p53, but not overexpression of intratumoral p53 protein, or serum p53 antibody is a prognostic factor in sporadic colorectal adenocarcinoma. Int J Oncol 26(1):65–75Google Scholar
  5. 5.
    Chang CC, Lin HH, Lin JK et al (2015) FBXW7 mutation analysis and its correlation with clinicopathological features and prognosis in colorectal cancer patients. Int J Biol Markers 30(1):e88–95CrossRefGoogle Scholar
  6. 6.
    Lin CC, Lin JK, Lin TC et al (2014) The prognostic role of microsatellite instability, codon-specific KRAS, and BRAF mutations in colon cancer. J Surg Oncol 110(4):451–457CrossRefGoogle Scholar
  7. 7.
    Chang YY, Lin PC, Lin HH et al (2016) Mutation spectra of RAS gene family in colorectal cancer. Am J Surg 212(3):537–544.e533CrossRefGoogle Scholar
  8. 8.
    Sinicrope FA, Sargent DJ (2012) Molecular pathways: microsatellite instability in colorectal cancer: prognostic, predictive, and therapeutic implications. Clin Cancer Res 18(6):1506–1512CrossRefGoogle Scholar
  9. 9.
    Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med 361(25):2449–2460CrossRefGoogle Scholar
  10. 10.
    Carethers JM (2017) Microsatellite instability pathway and EMAST in colorectal cancer. Curr Colorectal Cancer Rep 13(1):73–80CrossRefGoogle Scholar
  11. 11.
    Gill S, Loprinzi CL, Sargent DJ et al (2004) Pooled analysis of fluorouracil-based adjuvant therapy for stage II and III colon cancer: who benefits and by how much? J Clin Oncol 22(10):1797–1806CrossRefGoogle Scholar
  12. 12.
    Benson AB, Schrag D, Somerfield MR et al (2004) American Society of Clinical Oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J Clin Oncol 22(16):3408–3419CrossRefGoogle Scholar
  13. 13.
    NCCN Clinical Practice Guideline in Oncology Colon Cancer, (2017).Google Scholar
  14. 14.
    Lin CC, Lai YL, Lin TC et al (2012) Clinicopathologic features and prognostic analysis of MSI-high colon cancer. Int J Colorectal Dis 27(3):277–286CrossRefGoogle Scholar
  15. 15.
    Perucho M (1999) Correspondence re: C.R. Boland et al., A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res., 58: 5248–5257, 1998. Cancer Res 59(1):249–256Google Scholar
  16. 16.
    Farina-Sarasqueta A, van Lijnschoten G, Moerland E et al (2010) The BRAF V600E mutation is an independent prognostic factor for survival in stage II and stage III colon cancer patients. Ann Oncol 21(12):2396–2402CrossRefGoogle Scholar
  17. 17.
    Roth AD, Tejpar S, Delorenzi M et al (2010) Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60–00 trial. J Clin Oncol 28(3):466–474CrossRefGoogle Scholar
  18. 18.
    Phipps AI, Buchanan DD, Makar KW et al (2013) KRAS-mutation status in relation to colorectal cancer survival: the joint impact of correlated tumour markers. Br J Cancer 108(8):1757–1764CrossRefGoogle Scholar
  19. 19.
    Safaee Ardekani G, Jafarnejad SM, Tan L et al (2012) The prognostic value of BRAF mutation in colorectal cancer and melanoma: a systematic review and meta-analysis. PLoS ONE 7(10):e47054CrossRefGoogle Scholar
  20. 20.
    Johnson SM, Gulhati P, Rampy BA, et al (2010) Novel expression patterns of PI3K/Akt/mTOR signaling pathway components in colorectal cancer. J Am Coll Surg 210(5): 767–776, 776–768.Google Scholar
  21. 21.
    Danielsen SA, Eide PW, Nesbakken A et al (2015) Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta 1855(1):104–121Google Scholar
  22. 22.
    Bahrami A, Khazaei M, Hasanzadeh M et al (2018) Therapeutic potential of targeting PI3K/AKT pathway in treatment of colorectal cancer: rational and progress. J Cell Biochem 119(3):2460–2469CrossRefGoogle Scholar
  23. 23.
    Vilar E, Gruber SB (2010) Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol 7(3):153–162CrossRefGoogle Scholar
  24. 24.
    Carethers JM, Smith EJ, Behling CA et al (2004) Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. Gastroenterology 126(2):394–401CrossRefGoogle Scholar
  25. 25.
    Devaraj B, Lee A, Cabrera BL et al (2010) Relationship of EMAST and microsatellite instability among patients with rectal cancer. J Gastrointest Surg 14(10):1521–1528CrossRefGoogle Scholar
  26. 26.
    Garcia M, Choi C, Kim HR et al (2012) Association between recurrent metastasis from stage II and III primary colorectal tumors and moderate microsatellite instability. Gastroenterology 143(1):48–50.e41CrossRefGoogle Scholar
  27. 27.
    Watson MM, Berg M, Soreide K (2014) Prevalence and implications of elevated microsatellite alterations at selected tetranucleotides in cancer. Br J Cancer 111(5):823–827CrossRefGoogle Scholar
  28. 28.
    Yamada K, Kanazawa S, Koike J et al (2010) Microsatellite instability at tetranucleotide repeats in sporadic colorectal cancer in Japan. Oncol Rep 23(2):551–561Google Scholar
  29. 29.
    Du W, Mah JT, Lee J et al (2004) Incidence and survival of mucinous adenocarcinoma of the colorectum: a population-based study from an Asian country. Dis Colon Rectum 47(1):78–85CrossRefGoogle Scholar
  30. 30.
    Kang H, O'Connell JB, Maggard MA et al (2005) A 10-year outcomes evaluation of mucinous and signet-ring cell carcinoma of the colon and rectum. Dis Colon Rectum 48(6):1161–1168CrossRefGoogle Scholar
  31. 31.
    Catalano V, Loupakis F, Graziano F et al (2012) Prognosis of mucinous histology for patients with radically resected stage II and III colon cancer. Ann Oncol 23(1):135–141CrossRefGoogle Scholar
  32. 32.
    Park JS, Huh JW, Park YA et al (2015) Prognostic comparison between mucinous and nonmucinous adenocarcinoma in colorectal cancer. Medicine (Baltimore) 94(15):e658CrossRefGoogle Scholar
  33. 33.
    Lim SB, Yu CS, Jang SJ et al (2010) Prognostic significance of lymphovascular invasion in sporadic colorectal cancer. Dis Colon Rectum 53(4):377–384CrossRefGoogle Scholar
  34. 34.
    Huh JW, Lee JH, Kim HR et al (2013) Prognostic significance of lymphovascular or perineural invasion in patients with locally advanced colorectal cancer. Am J Surg 206(5):758–763CrossRefGoogle Scholar
  35. 35.
    Chang S-CL, Wang H-S, Yang S-H, Jiang J-K, Lan Y-T, Lin T-C, Li F-Y, Chen W-S, Lin J-K (2012) Lymphovascular invasion determines the outcome of stage I colorectal cancer patients. Formosan Journal of Surgery 45:141–145CrossRefGoogle Scholar
  36. 36.
    Nikberg M, Chabok A, Letocha H et al (2016) Lymphovascular and perineural invasion in stage II rectal cancer: a report from the Swedish colorectal cancer registry. Acta Oncol 55(12):1418–1424CrossRefGoogle Scholar
  37. 37.
    Church TR, Wandell M, Lofton-Day C et al (2014) Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut 63(2):317–325CrossRefGoogle Scholar
  38. 38.
    Vidal J, Muinelo L, Dalmases A et al (2017) Plasma ctDNA RAS mutation analysis for the diagnosis and treatment monitoring of metastatic colorectal cancer patients. Ann Oncol 28(6):1325–1332CrossRefGoogle Scholar
  39. 39.
    Melling N, Kowitz CM, Simon R et al (2016) High Ki67 expression is an independent good prognostic marker in colorectal cancer. J Clin Pathol 69(3):209–214CrossRefGoogle Scholar
  40. 40.
    Li P, Xiao ZT, Braciak TA et al (2016) Association between Ki67 Index and Clinicopathological Features in Colorectal Cancer. Oncol Res Treat 39(11):696–702CrossRefGoogle Scholar
  41. 41.
    Masuda T, Hayashi N, Kuroda Y, et al (2017) MicroRNAs as Biomarkers in Colorectal Cancer. Cancers (Basel) 9(9).Google Scholar
  42. 42.
    Gao S, Zhao ZY, Wu R et al (2018) Prognostic value of microRNAs in colorectal cancer: a meta-analysis. Cancer Manag Res 10:907–929CrossRefGoogle Scholar
  43. 43.
    Rozek LS, Schmit SL, Greenson JK, et al (2016) Tumor-infiltrating lymphocytes, crohn's-like lymphoid reaction, and survival from colorectal cancer. J Natl Cancer Inst 108(8).Google Scholar
  44. 44.
    Ko YS, Pyo JS (2019) Clinicopathological significance and prognostic role of tumor-infiltrating lymphocytes in colorectal cancer. Int J Biol Markers: 1724600818817320.Google Scholar

Copyright information

© Société Internationale de Chirurgie 2019

Authors and Affiliations

  • Tai-Chuan Kuan
    • 1
    • 2
  • Shih-Ching Chang
    • 2
    • 1
    Email author
  • Jen-Kou Lin
    • 1
    • 2
  • Tzu-Chen Lin
    • 1
    • 2
  • Shung-Haur Yang
    • 1
    • 2
    • 3
  • Jeng-Kae Jiang
    • 1
    • 2
  • Wei-Shone Chen
    • 1
    • 2
  • Huann-Sheng Wang
    • 1
    • 2
  • Yuan-Tzu Lan
    • 1
    • 2
  • Chun-Chi Lin
    • 1
    • 2
  • Hung-Hsin Lin
    • 1
    • 2
  • Sheng-Chieh Huang
    • 1
    • 2
  1. 1.Division of Colorectal Surgery, Department of SurgeryTaipei Veteran General HospitalTaipeiTaiwan
  2. 2.Faculty of MedicineNational Yang-Ming UniversityTaipeiTaiwan
  3. 3.National Yang-Ming University HospitalYilanTaiwan

Personalised recommendations