Advertisement

World Journal of Surgery

, Volume 43, Issue 3, pp 744–750 | Cite as

Proteomic Identification of Biomarkers Associated with Eating Control and Bariatric Surgery Outcomes in Patients with Morbid Obesity

  • Carmen Rodríguez-Rivera
  • Carmen Pérez-García
  • José Ramón Muñoz-Rodríguez
  • Marta Vicente-Rodríguez
  • Filomena Polo
  • Rhian-Marie Ford
  • Esperanza Segura
  • Alberto León
  • Elisabet Salas
  • Luis Sáenz-Mateos
  • Carmen González-Martín
  • Gonzalo Herradón
  • Luis Beato-Fernández
  • Jesús Martín-Fernández
  • Luis F. AlguacilEmail author
Original Scientific Report

Abstract

Background

The current therapeutics of morbid obesity could be significantly improved after the identification of novel biomarkers associated with the food addiction endophenotype of obesity and with bariatric surgery outcomes.

Methods

We applied differential expression proteomics and enzyme-linked immunosorbent confirmatory assays to identify (a) proteins that varied according to loss of control over eating in morbidly obese patients and (b) proteins that varied between normoweight controls and patients before and 1 year after bariatric surgery.

Results

Clusterin was the only protein that consistently varied according to eating control in patients. Patients showed increased levels of serum amyloid P protein, apolipoprotein A4, serotransferrin, complement factors B and C3 and haptoglobin with respect to controls; the levels of all these proteins tended to return to control values 1 year after surgery. In contrast, apolipoprotein A1 and transthyretin were initially downregulated in patients and were scarcely changed by surgery. Leucine-rich alpha-2-glycoprotein was markedly increased in patients only after surgery.

Conclusions

Clusterin could be of interest as a putative biomarker for food addiction diagnosis in people with morbid obesity. In addition, postsurgical normalization of the proteins initially dysregulated in obese subjects might help monitor clinical improvements after surgery, while lasting or newly detected alterations (i.e., those affecting transthyretin and leucine-rich alpha-2-glycoprotein) could reflect partial refractoriness and/or contribute to the early prediction of clinical problems.

Notes

Acknowledgements

This work was supported by Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III, Spain (PI10/00440), and Fundación Universitaria CEU San Pablo/Banco de Santander (PCON01/2015).

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Davis C, Curtis C, Levitan RD et al (2011) Evidence that ‘food addiction’ is a valid phenotype of obesity. Appetite 57:711–717CrossRefGoogle Scholar
  2. 2.
    Volkow ND, Wang GJ, Tomasi D et al (2013) The addictive dimensionality of obesity. Biol Psychiatry 73:811–818CrossRefGoogle Scholar
  3. 3.
    Steffen KJ, Engel SG, Wonderlich JA et al (2015) Alcohol and other addictive disorders following bariatric surgery: prevalence, risk factors and possible etiologies. Eur Eat Disord Rev 23:442–450CrossRefGoogle Scholar
  4. 4.
    Li L, Wu LT (2016) Substance use after bariatric surgery: a review. J Psychiatr Res 76:16–29CrossRefGoogle Scholar
  5. 5.
    Crowley N, Madan A, Wedin S et al (2014) Food cravings among bariatric surgery candidates. Eat Weight Disord 19:371–376CrossRefGoogle Scholar
  6. 6.
    Illán-Gómez F, Gonzálvez-Ortega M, Orea-Soler I et al (2012) Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg 22:950–955CrossRefGoogle Scholar
  7. 7.
    Muñoz-Rodríguez JR, Agarrado A, Martin-Fernández J et al (2018) Cocaine and amphetamine regulated transcript and brain-derived neurotrophic factor in morbid obesity. One-year follow-up after gastric bypass. Surg Obes Relat Dis.  https://doi.org/10.1016/j.soard.2018.07.026
  8. 8.
    Ikramuddin S, Livingston EH (2013) New insights on bariatric surgery outcomes. JAMA 310:2401–2402CrossRefGoogle Scholar
  9. 9.
    Bruno C, Fulford AD, Potts JR et al (2010) Serum markers of bone turnover are increased at six and 18 months after Roux-en-Y bariatric surgery: correlation with the reduction in leptin. J Clin Endocrinol Metab 95:159–166CrossRefGoogle Scholar
  10. 10.
    Maleckas A, Gudaitytė R, Petereit R et al (2016) Weight regain after gastric bypass: etiology and treatment options. Gland Surg 5:617624CrossRefGoogle Scholar
  11. 11.
    Crowley NM, LePage ML, Goldman RL et al (2012) The Food Craving Questionnaire-Trait in a bariatric surgery seeking population and ability to predict post-surgery weight loss at six months. Eat Behav 13:366–370CrossRefGoogle Scholar
  12. 12.
    del Castillo C, Morales L, Alguacil LF et al (2009) Proteomic analysis of the nucleus accumbens of rats with different vulnerability to cocaine addiction. Neuropharmacology 57:41–48CrossRefGoogle Scholar
  13. 13.
    Oberbach A, Blüher M, Wirth H et al (2011) Combined proteomic and metabolomic profiling of serum reveals association of the complement system with obesity and identifies novel markers of body fat mass changes. J Proteome Res 10:4769–4788CrossRefGoogle Scholar
  14. 14.
    Won JC, Park CY, Oh SW et al (2014) Plasma clusterin (ApoJ) levels are associated with adiposity and systemic inflammation. PLoS ONE 9:e103351CrossRefGoogle Scholar
  15. 15.
    Gil SY, Youn BS, Byun K et al (2013) Clusterin and LRP2 are critical components of the hypothalamic feeding regulatory pathway. Nat Commun 4:1862CrossRefGoogle Scholar
  16. 16.
    Palmiter RD (2007) Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci 30:375–381CrossRefGoogle Scholar
  17. 17.
    Spiller S, Li Y, Blüher M, Welch L et al (2017) Glycated lysine-141 in haptoglobin improves the diagnostic accuracy for type 2 diabetes mellitus in combination with glycated hemoglobin HbA1c and fasting plasma glucose. Clin Proteomics 14:10CrossRefGoogle Scholar
  18. 18.
    Karkhaneh M, Qorbani M, Mohajeri-Tehrani MR et al (2017) Association of serum complement C3 with metabolic syndrome components in normal weight obese women. J Diabetes Metab Disord 16:49CrossRefGoogle Scholar
  19. 19.
    Bratti LOS, do Carmo ÍAR, Vilela TF et al (2017) Complement component 3 (C3) as a biomarker for insulin resistance after bariatric surgery. Clin Biochem 50:529–532CrossRefGoogle Scholar
  20. 20.
    Matsunaga H, Iwashita M, Shinjo T et al (2018) Adipose tissue complement factor B promotes adipocyte maturation. Biochem Biophys Res Commun 495:740–748CrossRefGoogle Scholar
  21. 21.
    Rao R, Roche A, Febres G et al (2017) Circulating Apolipoprotein A-IV presurgical levels are associated with improvement in insulin sensitivity after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis 13:468–473CrossRefGoogle Scholar
  22. 22.
    Tussing-Humphreys LM, Nemeth E, Fantuzzi G et al (2010) Decreased serum hepcidin and improved functional iron status 6 months after restrictive bariatric surgery. Obesity (Silver Spring) 18:2010–2016CrossRefGoogle Scholar
  23. 23.
    Marin FA, Verlengia R, Crisp AH et al (2017) Micronutrient supplementation in gastric bypass surgery: prospective study on inflammation and iron metabolism in premenopausal women. Nutr Hosp 34:369–375CrossRefGoogle Scholar
  24. 24.
    Golizeh M, Lee K, Ilchenko S et al (2017) Increased serotransferrin and ceruloplasmin turnover in diet-controlled patients with type 2 diabetes. Free Radic Biol Med 113:461–469CrossRefGoogle Scholar
  25. 25.
    Damms-Machado A, Weser G, Bischoff SC (2012) Micronutrient deficiency in obese subjects undergoing low calorie diet. Nutr J 11:34CrossRefGoogle Scholar
  26. 26.
    Ingenbleek Y, Bernstein LH (2015) Plasma transthyretin as a biomarker of lean body mass and catabolic states. Adv Nutr 6:572–580CrossRefGoogle Scholar
  27. 27.
    Lesti G, Aiolfi A, Mozzi E et al (2018) Laparoscopic Gastric Bypass with Fundectomy and Gastric Remnant Exploration (LRYGBfse): results at 5-year follow-up. Obes Surg 28:2626–2633CrossRefGoogle Scholar
  28. 28.
    Martos-Moreno GÁ, Sackmann-Sala L, Barrios V et al (2014) Proteomic analysis allows for early detection of potential markers of metabolic impairment in very young obese children. Int J Pediatr Endocrinol 2014:9CrossRefGoogle Scholar
  29. 29.
    Bhonsle HS, Korwar AM, Chougale AD et al (2013) Proteomic study reveals downregulation of apolipoprotein A1 in plasma of poorly controlled diabetes: a pilot study. Mol Med Rep 7:495–498CrossRefGoogle Scholar
  30. 30.
    Song W, Wang X (2015) The role of TGFβ1 and LRG1 in cardiac remodelling and heart failure. Biophys Rev 7:91–104CrossRefGoogle Scholar
  31. 31.
    Orwoll ES, Wiedrick J, Jacobs J et al (2018) High-throughput serum proteomics for the identification of protein biomarkers of mortality in older men. Aging Cell 17:e12717CrossRefGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 2018

Authors and Affiliations

  • Carmen Rodríguez-Rivera
    • 1
  • Carmen Pérez-García
    • 1
  • José Ramón Muñoz-Rodríguez
    • 2
  • Marta Vicente-Rodríguez
    • 1
  • Filomena Polo
    • 2
  • Rhian-Marie Ford
    • 1
  • Esperanza Segura
    • 2
  • Alberto León
    • 2
  • Elisabet Salas
    • 2
  • Luis Sáenz-Mateos
    • 2
  • Carmen González-Martín
    • 1
    • 2
  • Gonzalo Herradón
    • 1
  • Luis Beato-Fernández
    • 2
  • Jesús Martín-Fernández
    • 2
  • Luis F. Alguacil
    • 1
    • 2
    Email author
  1. 1.Facultad de FarmaciaUniversidad CEU San PabloAlcorcón, MadridSpain
  2. 2.Hospital General Universitario de Ciudad RealCiudad RealSpain

Personalised recommendations