Environmental Management

, Volume 64, Issue 4, pp 520–535 | Cite as

Assessment of Agriculture Pressures Impact on the Joumine River Water Quality Using the PEGASE Model

  • Amira BoukariEmail author
  • Sihem Benabdallah
  • Etienne Everbecq
  • Pol Magermans
  • Aline Grard
  • Hamadi Habaieb
  • Jean-François Deliège


The protection of the aquatic environment while managing the risk of water scarcity in the Mediterranean region is challenging. Ensuring future sustainability of water resources needs improved monitoring networks and early warning system of future trends of water quality. A specific concern is given to nonpoint source pollution from agriculture, which is often the main source of water quality degradation in rivers. In this work, we focused on the Joumine river basin, a rural-catchment situated north Tunisia dominated by agricultural activities and exposed to eutrophication problems. Aiming to present an assessment framework of the spatial–temporal water quality variability and quantify “pressure-impact” relationships, we used a physically based modeling approach involving the river/basin integrated model PEGASE (Planification Et Gestion de l’ASsainissement des Eaux). PEGASE simulates watercourses physicochemical quality depending on the morphology of the drainage network, hydrometeorological conditions and natural and anthropogenic influences. Simulation results showed a better description of Joumine river water quality and helped in identifying exposed areas to nutrients export. Results have also emphasized the contribution of different pollution sources. We were able to examine the potential impact of agriculture diffuse pollution and we found that Nitrate is the element mostly threatening water quality. The nutrients patterns suggest that climate and farming practices are important factors controlling their transfer. These findings demonstrate that the adopted assessment approach in investigating the behavior of the studied hydrosystem can be a useful support to develop an appropriate surface water quality management program in a semiarid context.


Water quality Diffuse pollution Agricultural watershed Nitrate loading PEGASE model Joumine basin 



dissolved oxygen


chemical oxygen demand


Planification Et Gestion de l’ASsainissement des Eaux



This work was supported by the National Agronomy institute of Tunisia and the Aquapole of University of Liège. The first author received a scholarship from the Erasmus+ International Credit Mobility program awarded by the University of Liège on behalf of the European Commission. The authors acknowledge the Environmental protection agency in Tunisia (ANPE) and Prof. Olfa Mahjoub in the National Researches Institute of Rural Engineering, Water and Forest (INRGREF) for their support in performing chemical analysis. The authors also appreciate the help of Prof. Zohra Lili Chabaane and Dr Zeineb Kassouk for providing useful data and valuable suggestions.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Alexander RB, Smith RA, Schwarz GE (2000) Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 403:758–761. CrossRefGoogle Scholar
  2. Aouissi J, Benabdallah S, Chabaâne ZL, Cudennec C (2014) Modeling water quality to improve agricultural practices and land management in a Tunisian catchment using the Soil and Water Assessment Tool. J Environ Qual 43:18–25CrossRefGoogle Scholar
  3. Aouissi J, Chabaane ZL, Benabdallah S, Cudennec C (2015) Assessing the hydrological impacts of agricultural changes upstream of the Tunisian World Heritage sea-connected Ichkeul Lake. Proc Int Assoc Hydrol Sci 365:61–65. CrossRefGoogle Scholar
  4. Arheimer B, Dahné J, Donnelly C (2012) Climate change impact on riverine nutrient load and land-based remedial measures of the Baltic Sea Action Plan. Ambio 41:600–612CrossRefGoogle Scholar
  5. Bahadur R, Amstutz D, Samuels W(2013) Water contamination modeling—a review of the state of the science. J Water Resour Prot 5:142CrossRefGoogle Scholar
  6. Baird J, Jollineau M, Plummer R, Valenti J (2016) Exploring agricultural advice networks, beneficial management practices and water quality on the landscape: a geospatial social-ecological systems analysis. Land Use Policy 51:236–243. CrossRefGoogle Scholar
  7. Behrendt H, Opitz D (1999) Retention of nutrients in river systems: dependence on specific runoff and hydraulic load. Hydrobiologia 410:111–122. CrossRefGoogle Scholar
  8. Ben Rejeb Jenhani A, Bouaicha N, El Herry S, Fathalli A, Zekri I, Haj Zekri S, Limam A, Alouini S, Romdhane MS (2006) Les cyanobactéries et leurs potentialités toxiques dans les retenues des barrages du Nord de la Tunisie. Arch Inst Pasteur Tunis 83:71–81Google Scholar
  9. Billen G, Lancelot C, De Becker E, Servais P (1986) The terrestrial-marine interface: modelling nitrogen transformations during its transfer through the Schedt river system and its estuarine zone. In: Nihoul JCJ (ed) Marine interfaces ecohydrodynamics. Oceanography series, vol 42. Elsevier, Amsterdam. pp 429–452Google Scholar
  10. Bouraoui F, Grizzetti B (2014) Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Sci Total Environ 468:1267–1277. CrossRefGoogle Scholar
  11. Cherry KA, Shepherd M, Withers PJA, Mooney SJ (2008) Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: a review of methods. Sci Total Environ 406:1–23. CrossRefGoogle Scholar
  12. Collins AL, McGonigle DF (2008) Monitoring and modelling diffuse pollution from agriculture for policy support: UK and European experience. Environ Sci Policy 11:97–101. CrossRefGoogle Scholar
  13. Cudennec C, Leduc C, Koutsoyiannis D (2007) Dryland hydrology in Mediterranean regions—a review. Hydrol Sci J 52:1077–1087. CrossRefGoogle Scholar
  14. Davies J-M, Mazumder A (2003) Health and environmental policy issues in Canada: the role of watershed management in sustaining clean drinking water quality at surface sources. J Environ Manage 68:273–286CrossRefGoogle Scholar
  15. Deliège J-F (2012) Méthode d’integration de modèles adaptée aux systèmes hydrologiques multicomartimenté. Thèse de doctorat: Sciences de l’ingénieur, Université de Liège, Liège. p 266Google Scholar
  16. Deliège JF, Everbecq E, Magermans P, Grard A, Bourouag M, Blockx C(2010) Pegase, an integrated river/basin model dedicated to surface water quality assessment: application to cocaine. Acta Clinica Belgica, (65-Supplement) 1:42–48CrossRefGoogle Scholar
  17. Deliège J-F, Everbecq E, Magermans P, Grard A, Bourouag M, Blockx C (2009) PEGASE, a software dedicated to Surface Water Quality Assessment and to European database reporting. In: Proceedings of the European conference of the Czech Presidency of the Council of the EU Towards Environment, Opportunities of SEIS and SIZE: Integrating Environmental Knowledge in Europe, Masaryk University, Brno, Czech Republic. pp 24–32Google Scholar
  18. Descy JP, Servais P, Smitz JS, Billen G, Everbecq E (1987) Phytoplankton biomass and production in the River Meuse (Belgium). Water Res 21:1557–1566CrossRefGoogle Scholar
  19. De Becker E (1986) Apports, transferts et transformation de l’azote dans les réseaux hydrographiques: Développement d’une méthodologie générale et application au réseau belge. Thèse de doctorat, Université Libre de Bruxelles, Faculté des Sciences, Groupe de Microbiologie des Milieux Aquatiques. p 204Google Scholar
  20. Dupas R, Delmas M, Dorioz J-M, Garnier J, Moatar F, Gascuel-Odoux C (2015) Assessing the impact of agricultural pressures on N and P loads and eutrophication risk. Ecol Indic 48:396–407CrossRefGoogle Scholar
  21. Even Stéphanie, Billen G, Bacq N, Théry S, Ruelland D, Garnier J, Cugier P, Poulin M, Blanc S, Lamy F (2007) New tools for modelling water quality of hydrosystems: an application in the Seine River basin in the frame of the Water Framework Directive. Sci Total Environ 375:274–291CrossRefGoogle Scholar
  22. Even S, Thouvenin B, Bacq N, Billen G, Garnier J, Guezennec L, Blanc S, Ficht A, Le Hir P (2007) An integrated modelling approach to forecast the impact of human pressure in the Seine estuary. Hydrobiologia 588:13–29CrossRefGoogle Scholar
  23. Everbecq E, Grard A, Magermans P, Deliège J-F (2019) Water Framework Directive and modelling using PEGOPERA simulation software. J Model Optim 11:36–50. CrossRefGoogle Scholar
  24. Everbecq E, Gosselain V, Viroux L, Descy JP (2001) Potamon: a dynamic model for predicting phytoplankton composition and biomass in lowland rivers. Water Res 35(4):901–912CrossRefGoogle Scholar
  25. Fathalli A, Ben Rejeb Jenhani A, Moreira C, Welker M, Romdhane M, Antunes A, Vasconcelos V (2011) Molecular and phylogenetic characterization of potentially toxic cyanobacteria in Tunisian freshwaters. Syst Appl Microbiol 34:303–310. CrossRefGoogle Scholar
  26. Few R, Satyal P, McGahey D, Leavy J, Budds J, Assen M, Camfield L, Loubser D, Adnew M, Bewket W (2015) Vulnerability and adaptation to climate change in semi-arid areas in East Africa, ASSAR Working Paper, ASSAR PMU, South AfricaGoogle Scholar
  27. Flipo N, Even S, Poulin M, Théry S, Ledoux E (2007) Modeling nitrate fluxes at the catchment scale using the integrated tool CAWAQS. Sci Total Environ 375:69–79CrossRefGoogle Scholar
  28. García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta–Martínez T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth-Sci Rev 105:121–139. CrossRefGoogle Scholar
  29. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104CrossRefGoogle Scholar
  30. Grard A, Everbecq E, Magermans P, Bourouag M, Deliège J-F (2014) Transnational modelling of the Meuse District with PegOpera simulation software. Int J River Basin Manag 1–13.
  31. Hamdy A, Lacirignola C (1993) Water resources in some southern Mediterranean countries. Etat del’agriculture en Méditerranée: Ressources en eau: développement et gestion dans les pays méditerranéens. Bari: CIHEAM. p. 33–56 (Cahiers Options Méditerranéennes; n. 1(1))Google Scholar
  32. Helmer, Richard, Hespanhol, Ivanildo & World Health Organization (1997) Water pollution control: a guide to the use of water quality management principles. London: E & FN Spon.
  33. Hesse C, Krysanova V, Päzolt J, Hattermann FF (2008) Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality. Ecol Model 218:135–148. CrossRefGoogle Scholar
  34. Huang S, Hesse C, Krysanova V, Hattermann F (2009) From meso- to macro-scale dynamic water quality modelling for the assessment of land use change scenarios. Ecol Model 220:2543–2558. CrossRefGoogle Scholar
  35. Iglesias A, Garrote L, Flores F, Moneo M (2007) Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resour Manag 21:775–788. CrossRefGoogle Scholar
  36. INNORPI Institut National de la Normalisation et de la propriété industrielle (1997) Eaux superficielles destinées à la production d’eau alimentaire, Norme Tunisienne NT 09.13 (1983), p 3Google Scholar
  37. Jones CS, Schilling KE, Simpson IM, Wolter CF (2018) Iowa Stream Nitrate, Discharge and Precipitation: 30-Year Perspective. Environ Manage 62:709–720. CrossRefGoogle Scholar
  38. Kalkhoff SJ, Hubbard LE, Tomer MD, James DE (2016) Effect of variable annual precipitation and nutrient input on nitrogen and phosphorus transport from two Midwestern agricultural watersheds. Sci Total Environ 559:53–62. CrossRefGoogle Scholar
  39. Lam QD, Schmalz B, Fohrer N (2011) The impact of agricultural Best Management Practices on water quality in a North German lowland catchment. Environ Monit Assess 183:351–379. CrossRefGoogle Scholar
  40. Lillebø AI, Morais M, Guilherme P, Fonseca R, Serafim A, Neves R (2007) Nutrient dynamics in Mediterranean temporary streams: A case study in Pardiela catchment (Degebe River, Portugal). Limnol Ecol Manag Inland Waters 37:337–348. CrossRefGoogle Scholar
  41. Liu R, Xu F, Zhang P, Yu W, Men C (2016) Identifying non-point source critical source areas based on multi-factors at a basin scale with SWAT. J Hydrol 533:379–388. CrossRefGoogle Scholar
  42. Mander Ü, Kull A, Kuusemets V, Tamm T (2000) Nutrient runoff dynamics in a rural catchment: Influence of land-use changes, climatic fluctuations and ecotechnological measures. Ecol Eng 14:405–417. CrossRefGoogle Scholar
  43. MEDD, Agences de l’eau (2003) Système d’évaluation de la qualité de l’eau des cours d’eau (SEQ-Eau). Grilles d’évaluation version 2. p 40Google Scholar
  44. Melland AR, Fenton O, Jordan P (2018) Effects of agricultural land management changes on surface water quality: a review of meso-scale catchment research. Environ Sci Policy 84:19–25. CrossRefGoogle Scholar
  45. Molina-Navarro E, Trolle D, Martínez-Pérez S, Sastre-Merlín A, Jeppesen E (2014) Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios. J Hydrol 509:354–366. CrossRefGoogle Scholar
  46. Mtibaa S, Hotta N, Irie M (2018) Analysis of the efficacy and cost-effectiveness of best management practices for controlling sediment yield: a case study of the Joumine watershed, Tunisia. Sci Total Environ 616:1–16CrossRefGoogle Scholar
  47. Öztürk M, Copty NK, Saysel AK (2013) Modeling the impact of land use change on the hydrology of a rural watershed. J Hydrol 497:97–109. CrossRefGoogle Scholar
  48. Panagopoulos Y, Makropoulos C, Baltas E, Mimikou M (2011) SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations. Ecol Model 222:3500–3512. CrossRefGoogle Scholar
  49. Panagopoulos Y, Makropoulos C, Mimikou M (2011a) Diffuse surface water pollution: driving factors for different geoclimatic regions. Water Resour Manag 25:3635–3660. CrossRefGoogle Scholar
  50. Pinay G, Clément JC, Naiman RJ (2002) Basic principles and ecological consequences of changing water regimes on nitrogen cycling in fluvial systems. Environ Manage 30:481–491. CrossRefGoogle Scholar
  51. Ramos C, Carbonell G, Baudı́n JMG, Tarazona JV (2000) Ecological risk assessment of pesticides in the Mediterranean region. The need for crop-specific scenarios. Sci Total Environ 247:269–278CrossRefGoogle Scholar
  52. Ramos TB, Gonçalves MC, Branco MA, Brito D, Rodrigues S, Sánchez-Pérez J-M, Sauvage S, Prazeres Â, Martins JC, Fernandes ML, Pires FP (2015) Sediment and nutrient dynamics during storm events in the Enxoé temporary river, southern Portugal. CATENA 127:177–190. CrossRefGoogle Scholar
  53. Rode M, Arhonditsis G, Balin D, Kebede T, Krysanova V, Van Griensven A, Van der Zee SE (2010) New challenges in integrated water quality modelling. Hydrol Process 24:3447–3461CrossRefGoogle Scholar
  54. Schilling KE, Wolter CF (2009) Modeling nitrate-nitrogen load reduction strategies for the Des Moines River, Iowa using SWAT. Environ Manage 44:671–682. CrossRefGoogle Scholar
  55. Sellami H, Benabdallah S, La Jeunesse I, Vanclooster M (2016) Quantifying hydrological responses of small Mediterranean catchments under climate change projections. Sci Total Environ 543:924–936CrossRefGoogle Scholar
  56. Shapiro D (1995) Population growth, changing agricultural practices, and environmental degradation in Zaire. Popul Environ 16:221–236CrossRefGoogle Scholar
  57. Sharma D, Kansal A (2013) Assessment of river quality models: a review. Rev Environ Sci Biotechnol 12:285–311. CrossRefGoogle Scholar
  58. Slimani M, Cudennec C, Feki H (2007) Structure du gradient pluviométrique de la transition Méditerranée–Sahara en Tunisie: déterminants géographiques et saisonnalité/Structure of the rainfall gradient in the Mediterranean–Sahara transition in Tunisia: geographical determinants and seasonality. Hydrol Sci J 52:1088–1102. CrossRefGoogle Scholar
  59. Tong STY, Chen W (2002) Modeling the relationship between land use and surface water quality. J Environ Manage 66:377–393. CrossRefGoogle Scholar
  60. Varanou E, Gkouvatsou E, Baltas E, Mimikou M (2002) Quantity and quality integrated catchment modeling under climate change with use of soil and water assessment tool model. J Hydrol Eng 7:228–244CrossRefGoogle Scholar
  61. Yang X, Warren R, He Y, Ye J, Li Q, Wang G (2018) Impacts of climate change on TN load and its control in a River Basin with complex pollution sources. Sci Total Environ. 615:1155–1163. CrossRefGoogle Scholar
  62. Williams JR, Jones CA, Dyke PT (1984) A modeling approach to determining the relationship between erosion and soil productivity. Trans ASAE 27(1):129–144CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Agronomy Institute of Tunisia, GREEN-TEAM LaboratoryUniversity of CarthageTunis MahrajèneTunisia
  2. 2.Aquapôle Research and Development unit, Freshwater and Oceanic Science Unit of ResearchUniversity of LiègeLiègeBelgium
  3. 3.Center for Water Research and Technologies, CERTESolimanTunisia

Personalised recommendations