Advertisement

Removal of Selected Pharmaceuticals and Personal Care Products from Wastewater using Soybean Peroxidase

  • Neda Mashhadi
  • Keith E. Taylor
  • Nathalie Jimenez
  • Sherin T. Varghese
  • Yaniv Levi
  • Corinne Lonergan
  • Emilie Lebeau
  • Mathilde Lamé
  • Elodie Lard
  • Nihar Biswas
Article
  • 45 Downloads

Abstract

Personal care products and pharmaceuticals have been reported in various concentrations in the effluent of municipal sewage treatment plants (STP). Although they are generally found in the nanogram to microgram per liter range, many of them might have adverse health effects on humans at these concentrations. Conventional treatments applied at the STP are unable to effectively remove most of these recalcitrant compounds, thus there is a necessity for development of alternative treatment techniques. In this article, the efficiency of enzymatic treatment using soybean peroxidase in treating some commonly found micropollutants is discussed. The target compounds were, two phenolic surfactant breakdown products, nonylphenol and octylphenol, two antimicrobial agents, Triclosan and sulfamethoxazole and three phenolic steroids. The effects of the most important parameters pH, enzyme concentration and peroxide concentration have been evaluated for each compound. The treatment of synthetic wastewater was shown to be effective (≥95% removal), except for sulfamethoxazole, in concentration ranges of 10 s of µM at neutral pH with 2–5 mU/L of catalytic activity and 2–3 molar equivalents of hydrogen peroxide. The effectiveness of the treatment has also been determined for lower concentrations (6–9 nM) which approximate those in real wastewater. A matrix effect was found in the treatment of Triclosan in spiked real wastewater indicating that re-optimization of important parameters for STP treatment would be required to achieve high removal efficiency. A reverse-phase, solid-phase extraction technique was used to concentrate target analytes in real wastewater, enabling chromatographic detection by UV absorbance.

Keywords

Micropollutant Enzymatic treatment Wastewater Remediation 

Notes

Acknowledgements

The authors would like to express their gratitude to Mr. Paul Drca, Manager Environmental Quality, Lou Romano Reclamation Plant (The West Windsor sewage treatment plant) for providing the wastewater samples. The Natural Sciences and Engineering Research Council of Canada, scholarships from French regional or national organizations and the Department of Chemistry and Biochemistry of the University of Windsor are also gratefully acknowledged for their support and funding.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

267_2018_1132_MOESM1_ESM.docx (300 kb)
Supplementary Information

References

  1. Auriol M, Filali-Meknassi Y, Tyagi RD, Adams CD (2007) Laccase-catalyzed conversion of natural and synthetic hormones from a municipal wastewater. Water Res 41(15):3281–3288.  https://doi.org/10.1016/j.watres.2007.05.008 CrossRefGoogle Scholar
  2. Barrios-Estrada C, de Jesús Rostro-Alanis M, Muñoz-Gutiérrez BD, Iqbal HMN, Kannan S, Parra-Saldívar R (2018) Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation – A review. Sci Total Environ 612:1516–1531.  https://doi.org/10.1016/j.scitotenv.2017.09.013 CrossRefGoogle Scholar
  3. Becker D, Rodriguez-Mozaz S, Insa S, Schoevaart R, Barceló D, De Cazes M, Belleville M, Séanchez-Marcano J, Misovic A, Oehlmann A, Wagner M (2017) Removal of endocrine disrupting chemicals in wastewater by enzymatic treatment with fungal laccases. Org Process Res Dev 21(4):480–491CrossRefGoogle Scholar
  4. Carpenter CMG, Helbling DE (2018) Widespread micropollutant monitoring in the Hudson River estuary reveals spatiotemporal micropollutant clusters and their sources. Environ Sci Technol 52:6187–6196.  https://doi.org/10.1021/acs.est.8b00945 CrossRefGoogle Scholar
  5. Caza N, Bewtra J, Biswas N, Taylor K (1999) Removal of phenolic compounds from synthetic wastewater using soybean peroxidase. Water Res 33(13):3012–3018.  https://doi.org/10.1016/s0043-1354(98)00525-9 CrossRefGoogle Scholar
  6. Eibes G, Debernardi G, Feijoo G, Moreira MT, Lema JM (2010) Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase. Biodegradation 22(3):539–550.  https://doi.org/10.1007/s10532-010-9426-0 CrossRefGoogle Scholar
  7. Feng W, Taylor KE, Biswas N, Bewtra JK (2013) Soybean peroxidase trapped in product precipitate during phenol polymerization retains activity and may be recycled. J Chem Technol Biotechnol 88(8):1429–1435.  https://doi.org/10.1002/jctb.4075 CrossRefGoogle Scholar
  8. Fukuda T, Uchida H, Takashima Y, Uwajima T, Kawabata T, Suzuki M (2001) Degradation of Bisphenol A by purified laccase from. Trametes villosa. Biochem Biophys Res Commun 284(3):704–706.  https://doi.org/10.1006/bbrc.2001.5021 CrossRefGoogle Scholar
  9. Garcia-Morales R, Rodríguez-Delgado M, Gomez-Mariscal K, Orona-Navar C, Hernandez-Luna C, Torres E, Parra R, Cárdenas-Chávez D, Mahlknecht J, Ornelas-Soto N (2015) Biotransformation of endocrine-disrupting compounds in groundwater: Bisphenol A, nonylphenol, ethynylestradiol and Triclosan by a laccase cocktail from Pycnoporus sanguineus CS43. Water Air Soil Pollut 226(8):1–14.  https://doi.org/10.1007/s11270-015-2514-3 CrossRefGoogle Scholar
  10. Hua W, Bennett E, Letcher R (2005) Triclosan in waste and surface waters from the upper Detroit River by liquid chromatography-electrospray-tandem quadrupole mass spectrometry. Environ Int 31(5):621–630.  https://doi.org/10.1016/j.envint.2004.10.019 CrossRefGoogle Scholar
  11. Husain Q, Qayyum S (2012) Biological and enzymatic treatment of bisphenol A and other endocrine disrupting compounds: a review. Crit Rev Biotechnol 33(3):260–292.  https://doi.org/10.3109/07388551.2012.694409 CrossRefGoogle Scholar
  12. Ibrahim M, Ali H, Taylor K, Biswas N, Bewtra J (2001) Enzyme-catalyzed removal of phenol from refinery wastewater: feasibility studies. Water Environ Res 73(2):165–172.  https://doi.org/10.2175/106143001x138822 CrossRefGoogle Scholar
  13. Khan U, Nicell JA (2007) Horseradish peroxidase-catalysed oxidation of aqueous natural and synthetic oestrogens. J Chem Technol Biotechnol 82(9):818–830.  https://doi.org/10.1002/jctb.1746 CrossRefGoogle Scholar
  14. Kim Y, Nicell JA (2006) Laccase-catalysed oxidation of aqueous triclosan. J Chem Technol Biotechnol 81(8):1344–1352.  https://doi.org/10.1002/jctb.1507 CrossRefGoogle Scholar
  15. Li J, Peng J, Zhang Y, Ji Y, Shi H, Mao L, Gao S (2016) Removal of Triclosan via peroxidase-mediated reactions in water: Reaction kinetics, products and detoxification. J Hazard Mater 310:152–160.  https://doi.org/10.1016/j.jhazmat.2016.02.037 CrossRefGoogle Scholar
  16. Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut 157(2):561–568.  https://doi.org/10.1016/j.envpol.2008.09.020 CrossRefGoogle Scholar
  17. Mazloum S, Al-Ansari MM, Taylor K, Bewtra JK, Biswas N (2016) Additive effect on soybean peroxidase-catalyzed removal of anilines from water. Environ Eng Sci 33(2):133–139.  https://doi.org/10.1089/ees.2015.0383 CrossRefGoogle Scholar
  18. Melo C, Dezotti M, Marques M (2015) A comparison between the oxidation with laccase and horseradish peroxidase for triclosan conversion. Environ Technol 37(3):335–343.  https://doi.org/10.1080/09593330.2015.1069897 CrossRefGoogle Scholar
  19. Noguera-Oviedo K, Aga DS (2016) Lessons learned from more than two decades of research on emerging contaminants in the environment. J Haz Mat 316:242–251.  https://doi.org/10.1016/j.jhazmat.2016.04.058 CrossRefGoogle Scholar
  20. Perez-Fernandez. V, Mainero Rocca L, Tomai P, Fanali S, Gentili A (2017) Recent advancements and future trends in environmental analysis: sample preparation, liquid chromatography and mass spectrometry. Anal Chim Acta 983:9–41.  https://doi.org/10.1016/j.aca.2017.06.029 CrossRefGoogle Scholar
  21. Petrie B, Barden R, Kasprzyk-Hordern B (2014) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27.  https://doi.org/10.1016/j.watres.2014.08.053 CrossRefGoogle Scholar
  22. Pruden A, Pei R, Storteboom H, Carlson KH (2006) Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado. Environ Sci Technol 40(23):7445–7450.  https://doi.org/10.1021/es060413l CrossRefGoogle Scholar
  23. Racz L, Goel RK (2010) Fate and removal of estrogens in municipal wastewater. J Environ Monit 12(1):58–70.  https://doi.org/10.1039/b917298j CrossRefGoogle Scholar
  24. Rahmani K, Faramarzi MA, Mahvi AH, Gholami M, Esrafili A, Forootanfar H, Farzadkia M (2015) Elimination and detoxification of sulfathiazole and sulfamethoxazole assisted by laccase immobilized on porous silica beads. Int Biodeterior Biodegrad 97:107–114.  https://doi.org/10.1016/j.ibiod.2014.10.018 CrossRefGoogle Scholar
  25. Raven EL, Dunford H (2016) Heme Peroxidases. Royal Society of Chemistry, Cambridge, p 1–57. pp 299–304Google Scholar
  26. Richardson SD (2009) Water analysis: emerging contaminants and current issues. Anal Chem 81(12):4645–4677.  https://doi.org/10.1021/ac9008012 CrossRefGoogle Scholar
  27. Richardson SD, Kimura (2017) Environ Technol Innov 8:40–56.  https://doi.org/10.1016/j.eti.2017.04.002 CrossRefGoogle Scholar
  28. Richardson SD, Ternes TA (2018) Water analysis: emerging contaminants and current issues. Anal Chem 90:398–428.  https://doi.org/10.1021/acs.analchem.7b04577 CrossRefGoogle Scholar
  29. Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R (2013) Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93(7):1268–1287.  https://doi.org/10.1016/j.chemosphere.2013.07.059 CrossRefGoogle Scholar
  30. Sakuyama H, Endo Y, Fujimoto K, Hatano Y (2003) Oxidative degradation of alkylphenols by horseradish peroxidase. J Biosci Bioeng 96(3):227–231.  https://doi.org/10.1263/jbb.96.227 CrossRefGoogle Scholar
  31. Steevensz A, Al-Ansari MM, Taylor KE, Bewtra JK, Biswas N (2009) Comparison of soybean peroxidase with laccase in the removal of phenol from synthetic and refinery wastewater samples. J Chem Technol Biotechnol 84(5):761–769.  https://doi.org/10.1002/jctb.2109 CrossRefGoogle Scholar
  32. Steevensz A, Cordova Villegas LG, Feng W, Taylor KE, Bewtra JK, Biswas N (2014) Soybean peroxidase for industrial wastewater treatment: a mini review. J Environ Sci Eng 9(3):181–186.  https://doi.org/10.1680/jees.13.00013 CrossRefGoogle Scholar
  33. Tsutsumi Y, Haneda T, Nishida T (2001) Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere 42(3):271–276.  https://doi.org/10.1016/s0045-6535(00)00081-3 CrossRefGoogle Scholar
  34. Wright H, Nicell JA (1999) Characterization of soybean peroxidase for the treatment of aqueous phenols. Bioresour Technol 70(1):69–79.  https://doi.org/10.1016/s0960-8524(99)00007-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Neda Mashhadi
    • 1
  • Keith E. Taylor
    • 1
  • Nathalie Jimenez
    • 1
  • Sherin T. Varghese
    • 1
  • Yaniv Levi
    • 1
  • Corinne Lonergan
    • 1
  • Emilie Lebeau
    • 1
  • Mathilde Lamé
    • 1
  • Elodie Lard
    • 1
  • Nihar Biswas
    • 2
  1. 1.Department of Chemistry and BiochemistryUniversity of WindsorWindsorCanada
  2. 2.Department of Civil and Environmental EngineeringUniversity of WindsorWindsorCanada

Personalised recommendations