Advertisement

Parental sex allocation and sex-specific survival drive offspring sex ratio bias in little owls

  • Matthias TschumiEmail author
  • Jolanda Humbel
  • Joscha Erbes
  • Julien Fattebert
  • Jochen Fischer
  • Gerhard Fritz
  • Barbara Geiger
  • Ronald van Harxen
  • Bernd Hoos
  • Johanna Hurst
  • Lars Bo Jacobsen
  • Herbert Keil
  • Werner Kneule
  • Vanja T. Michel
  • Heinz Michels
  • Leander Möbius
  • Marco Perrig
  • Philip Rößler
  • Dieter Schneider
  • Siegfried Schuch
  • Pascal Stroeken
  • Beat Naef-Daenzer
  • Martin U. Grüebler
Original Article

Abstract

Although biased offspring sex ratios are common in species with sexual size dimorphism, the proximate causes are often unresolved. This is because two general mechanisms operating in different ways and in various periods of reproduction can lead to the bias: sex-biased survival or parental sex-allocation. We examined nestling sex ratio patterns between hatching and fledging, sexual size dimorphism, and factors affecting nestling survival using growth and survival data of 846 individual little owl Athene noctua nestlings with known sex from 307 broods from Germany, the Netherlands and Denmark. Nestling sex ratio was female-biased, mainly due to a significant female bias in the first-hatched chicks. Females showed a higher body weight than male nestlings at ringing and body weight of nestlings decreased with hatching sequence. Nestling survival was higher in females (Φ = 0.91) than in males (Φ = 0.85), and survival rates were positively related to body mass and negatively to brood size. Although the observed lower survival of males can cause an overall female-biased sex ratio, the sex dimorphism and survival patterns found here are unlikely to explain the conspicuous sex ratio pattern with a female bias in the first-hatched nestlings and the increase in female bias across the season. Thus, these results point towards interacting mechanisms of parental sex allocation strategies and sex-specific survival. As the female bias was allocated to the first rank that is most likely to survive, the female bias will increase under suboptimal breeding conditions. We therefore suggest that under suboptimal ecological conditions, higher investment into females is adaptive in little owls.

Significance statement

Biased sex ratios can have severe effects on the social behaviour and population dynamics of endangered species. However, the existence of subtle sex ratio bias is often unknown and its proximate mechanisms and ultimate consequences often remain unclear. Small sample sizes make the detection of subtle effects unlikely and often fail to disentangle diverging mechanisms such as sex-biased survival and parental sex allocation. We used a large dataset of 846 little owl nestlings from 307 broods from three countries to investigate offspring sex ratio patterns, sexual size dimorphism and nestling survival simultaneously. Our findings suggest interacting mechanisms of parental sex allocation strategies and sex-specific survival to drive biased offspring sex ratios in little owls. The context dependence of the sex ratio bias indicates that offspring sex ratio bias in little owls is both, a consequence of—and an adaptation to—suboptimal breeding conditions.

Keywords

Birds Hatching order Nestling survival Parental investment Sex-specific mortality Sexual size dimorphism 

Notes

Acknowledgments

We thank all field assistants and volunteers, in particular Gerhard Bauer, Wolfgang Graef, Josef Helmik, Thomas Henschel, Rudi Holleitner, Petra Kauder, Klaus Lopitz, Alexander Neu, Jens Polzien, Erwin Reichert, Volker Schlie, Dirk Unkelbach and Bruno Vollmar for their help in collecting data. Furthermore, we thank Fränzi Korner-Nievergelt for statistical support and three anonymous referees for their valuable comments.

Funding

This work was supported by the Swiss National Science Foundation (Grant 3100A 132951/1 to BN-D and MUG), the Hirschmann Foundation and the Karl Mayer Foundation.

Compliance with ethical standards

Ethical approval

Handling and ringing of little owl nestlings in Germany was carried out under the permit of the regional council of Baden-Württemberg, Germany (licence No. 35e9185.81/0288), the regional council of Rheinland Pfalz (licence Az 42/553-253) and Stuttgart (licence Az 55-8853.17), the Struktur- und Genehmigungsdirektion (SGD) Süd and SGD Nord of Rheinland-Pfalz, as well as Vogelwarte Radolfzell (licences no. 1146, 1191; 1403 and 1903). Handling and ringing of the nestlings in Denmark was carried out under licence from Copenhagen Bird Ringing Centre (A-392 personal ringing licence to LBJ). The sampling of 5 growing breast feathers in Denmark was permitted by The Animal Experiments Inspectorate (#2011/561-17). Handling and ringing in the Netherlands was carried out under the licence from Vogeltrekstation, Dutch centre for avian migration and demography (R. van Harxen–848). The sampling of growing breast feathers in the Netherlands was permitted by Dierexperimentencommissie Koninklijke Academie van Wetenschappen/NIOO 13. 07 advies. All procedures followed the ASAB/ABS guidelines for the ethical treatment of animals in behavioural research and teaching and all applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The handling of birds was performed with maximum care and disturbance to nests kept to a minimum. Ethical approval for involving animals in this study was received through the application procedure for ringing permits and the scientific commission of the Swiss Ornithological Institute.

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

265_2019_2694_MOESM1_ESM.pdf (739 kb)
ESM 1 (PDF 738 kb)

References

  1. Anderson DJ, Budde C, Apanius V, Gomez JEM, Bird DM, Weathers WW (1993) Prey size influences female competitive dominance in nestling American kestrels (Falco sparverius). Ecology 74:367–376CrossRefGoogle Scholar
  2. Apolloni N, Grüebler MU, Arlettaz R, Gottschalk TK, Naef-Daenzer B (2018) Habitat selection and range use of little owls in relation to habitat patterns at three spatial scales. Anim Conserv 2:65–75CrossRefGoogle Scholar
  3. Arroyo B (2002) Sex-biased nestling mortality in the Montagu’s harrier Circus pygargus. J Avian Biol 33:455–460CrossRefGoogle Scholar
  4. Badyaev AV (2002) Sex-biased hatching order and adaptive population divergence in a passerine bird. Science 295:316–318CrossRefGoogle Scholar
  5. Badyaev AV, Oh KP, Mui R (2006) Evolution of sex-biased maternal effects in birds: II. Contrasting sex-specific oocyte clustering in native and recently established populations. J Evol Biol 19:909–921CrossRefGoogle Scholar
  6. Bates D, Maechler M, Bolker BM, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  7. Bednarz JC, Hayden TJ (1991) Skewed brood sex ratio and sex-biased hatching sequence in Harris’s hawks. Am Nat 137:116–132CrossRefGoogle Scholar
  8. Blanco G, Martínez-Padilla J, Dávila JA, Serrano D, Viñuela J (2003) First evidence of sex differences in the duration of avian embryonic period: consequences for sibling competition in sexually dimorphic birds. Behav Ecol 14:702–706CrossRefGoogle Scholar
  9. Bollinger PB (1994) Relative effects of hatching order, egg-size variation, and parental quality on chick survival in common terns. Auk 111:263–273CrossRefGoogle Scholar
  10. Bortolotti GR (1986) Influence of sibling competition on nestling sex ratios of sexually dimorphic birds. Am Nat 127:495–507CrossRefGoogle Scholar
  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  12. Carranza J (2004) Sex allocation within broods: the intrabrood sharing-out hypothesis. Behav Ecol 15:223–232CrossRefGoogle Scholar
  13. Cichoń M, Sendecka J, Gustafsson L (2005) Male-biased sex ratio among unhatched eggs in great tit Parus major, blue tit P. caeruleus and collared flycatcher Ficedula albicollis. J Avian Biol 36:386–390CrossRefGoogle Scholar
  14. Clotfelter ED, Whittingham LA, Dunn PO (2003) Laying order, hatching asynchrony and nestling body mass in tree swallows Tachycineta bicolor. J Avian Biol 31:329–334CrossRefGoogle Scholar
  15. Cordero PJ, Viñuela J, Aparicio JM, Veiga JP (2001) Seasonal variation in sex ratio and sexual egg dimorphism favouring daughters in first clutches of the spotless starling. J Evol Biol 14:829–834CrossRefGoogle Scholar
  16. Core Team R (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://www.r-project.org/ Google Scholar
  17. Daan S, Dijkstra C, Weissing FJ (1996) An evolutionary explanation for seasonal trends in avian sex ratios. Behav Ecol 7:426–430CrossRefGoogle Scholar
  18. Darwin C (1871) The descent of man and selection in relation to sex. John Murray, LondonCrossRefGoogle Scholar
  19. Dijkstra C, Daan S, Buker JB (1990) Adaptive seasonal variation in the sex ratio of kestrel broods. Funct Ecol 4:143–147CrossRefGoogle Scholar
  20. Donald PF (2007) Adult sex ratios in wild bird populations. Ibis 149:671–692CrossRefGoogle Scholar
  21. Droge DL, Gowaty PA, Weathers WW (1991) Sex-biased provisioning: a test for differences in field metabolic rates of nestling eastern bluebirds. Condor 93:793–798CrossRefGoogle Scholar
  22. Eberhart-Phillips LJ, Küpper C, Carmona-Isunza MC, Vincze O, Zefania S, Cruz-López M, Kosztolányi A, Miller TEX, Barta Z, Cuthill IC, Burke T, Székely T, Hoffman JI, Krüger O (2018) Demographic causes of adult sex ratio variation and their consequences for parental cooperation. Nat Commun 9:1651CrossRefGoogle Scholar
  23. Espíndola-Hernández P, Castaño-Villa GJ, Vásquez RA, Quirici V (2017) Sex-specific provisioning of nutritious food items in relation to brood sex ratios in a non-dimorphic bird. Behav Ecol Sociobiol 71:65CrossRefGoogle Scholar
  24. Fiala KL, Congdon JD (1983) Energetic consequences of sexual size dimorphism in nestling red-winged blackbirds. Ecology 64:642–647CrossRefGoogle Scholar
  25. Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, OxfordCrossRefGoogle Scholar
  26. Fletcher KL, Hamer KC (2004) Offspring sex ratio in the common tern Sterna hirundo, a species with negligible sexual size dimorphism. Ibis 146:454–460CrossRefGoogle Scholar
  27. Gelman A, Hill J (2007) Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge.Google Scholar
  28. Gilby AJ, Sorato E, Griffith SC (2012) Maternal effects on begging behaviour: an experimental demonstration of the effects of laying sequence, hatch order, nestling sex and brood size. Behav Ecol Sociobiol 66:1519–1529CrossRefGoogle Scholar
  29. Grüebler MU, Müller M, Michel VT, Perrig M, Keil H, Naef-Daenzer B, Korner-Nievergelt F (2018) Brood provisioning and reproductive benefits in relation to habitat quality: a food supplementation experiment. Anim Behav 141:45–55CrossRefGoogle Scholar
  30. Hardy ICW (1997) Possible factors influencing vertebrate sex ratios: an introductory overview. Appl Anim Behav Sci 51:217–241CrossRefGoogle Scholar
  31. Hasselquist D, Kempenaers B (2002) Parental care and adaptive brood sex ratio manipulation in birds. Phil Trans R Soc B 357:363–372CrossRefGoogle Scholar
  32. Hipkiss T, Hörnfeldt B, Eklund U, Berlin S (2002) Year-dependent sex-biased mortality in supplementary-fed Tengmalm’s owl nestlings. J Anim Ecol 71:693–699CrossRefGoogle Scholar
  33. Hjernquist MB, Thuman Hjernquist KA, Forsman JT, Gustafsson L (2009) Sex allocation in response to local resource competition over breeding territories. Behav Ecol 20:335–339CrossRefGoogle Scholar
  34. Hurst J (2009) Die Populationsgenetik des Steinkauzes (Athene noctua) in Süddeutschland und angrenzenden Gebieten. Diploma thesis. Albert-Ludwigs-Universität, FreiburgGoogle Scholar
  35. Juillard M (1979) La croissance des jeunes Chouettes chevêches, Athene noctua, pendant leur séjour au nid. Nos Oiseaux 35:113–124Google Scholar
  36. Julliard R (2000) Sex-specific dispersal in spatially varying environments leads to habitat-dependent evolutionary stable offspring sex ratios. Behav Ecol 11:421–428CrossRefGoogle Scholar
  37. Kilner R (1998) Primary and secondary sex ratio manipulation by zebra finches. Anim Behav 56:155–164CrossRefGoogle Scholar
  38. Komdeur J, Pen I (2002) Adaptive sex allocation in birds: the complexities of linking theory and practice. Phil Trans R Soc B 357:373–380CrossRefGoogle Scholar
  39. Korner-Nievergelt F, Roth T, von Felten S, Guélat J, Almasi B, Korner-Nievergelt P (2015) Bayesian data analysis in ecology using linear models with R, BUGS, and Stan. Elsevier, New YorkGoogle Scholar
  40. Krijgsveld KL, Dijkstra C, Visser GH, Daan S (1998) Energy requirements for growth in relation to sexual size dimorphism in marsh harrier Circus aeruginosus nestlings. Physiol Zool 71:693–702CrossRefGoogle Scholar
  41. Leimar O (1996) Life-history analysis of the Trivers and Willard sex-ratio problem. Behav Ecol 7:316–325CrossRefGoogle Scholar
  42. Magrath RD (1990) Hatching asynchrony in altricial birds. Biol Rev 65:587–622CrossRefGoogle Scholar
  43. Magrath RD (1991) Nestling weight and juvenile survival in the blackbird, Turdus merula. J Anim Ecol 60:335–351CrossRefGoogle Scholar
  44. Mead PS, Morton ML, Fish BE (1987) Sexual dimorphism in egg size and implications regarding facultative manipulation of sex in mountain white-crowned sparrows. Condor 89:798–803CrossRefGoogle Scholar
  45. Michel (2016) Individual responses of adult little owls (Athene noctua) to environmental conditions. PhD thesis, University of ZurichGoogle Scholar
  46. Michel VT, Naef-Daenzer B, Keil H, Grüebler MU (2017) Reproductive consequences of farmland heterogeneity in little owls (Athene noctua). Oecologia 183:1019–1029CrossRefGoogle Scholar
  47. Michler SPM, Nicolaus M, Ubels R, van der Velde M, Komdeur J, Both C, Tinbergen JM (2011) Sex-specific effects of the local social environment on juvenile post-fledging dispersal in great tits. Behav Ecol Sociobiol 65:1975–1986CrossRefGoogle Scholar
  48. Morrison CA, Robinson RA, Clark JA, Gill JA (2016) Causes and consequences of spatial variation in sex ratios in a declining bird species. J Anim Ecol 85:1298–1306CrossRefGoogle Scholar
  49. Neto JM, Hansson B, Hasselquist D (2011) Sex allocation in Savi’s warblers Locustella luscinioides: multiple factors affect seasonal trends in brood sex ratios. Behav Ecol Sociobiol 65:297–304CrossRefGoogle Scholar
  50. Nicolaus M, Michler SPM, Ubels R, van der Velde M, Komdeur J, Both C, Tinbergen JM (2009) Sex-specific effects of altered competition on nestling growth and survival: an experimental manipulation of brood size and sex ratio. J Anim Ecol 78:414–426CrossRefGoogle Scholar
  51. Oddie KR (2000) Size matters: competition between male and female great tit offspring. J Anim Ecol 69:903–912CrossRefGoogle Scholar
  52. Penteriani V, Delgado MM, Pérez-García JM et al (2010) Sex allocation from an owl perspective: clutch order could determine brood sex to reduce sibling aggression in the eagle owl Bubo bubo. Ornis Fenn 87:135–143Google Scholar
  53. Perrig M, Grüebler MU, Keil H, Naef-Daenzer B (2014) Experimental food supplementation affects the physical development, behaviour and survival of little owl Athene noctua nestlings. Ibis 156:755–767CrossRefGoogle Scholar
  54. Perrig M, Grüebler MU, Keil H, Naef-Daenzer B (2017) Post-fledging survival of little owls Athene noctua in relation to nestling food supply. Ibis 159:532–540CrossRefGoogle Scholar
  55. Rutkowska J, Badyaev AV (2008) Meiotic drive and sex determination: molecular and cytological mechanisms of sex ratio adjustment in birds. Phil Trans R Soc B 363:1675–1686CrossRefGoogle Scholar
  56. Teather KL, Weatherhead PJ (1994) Allometry, adaptation, and the growth and development of sexually dimorphic birds. Oikos 71:515–525CrossRefGoogle Scholar
  57. Thorup K, Sunde P, Jacobsen LB, Rahbek C (2010) Breeding season food limitation drives population decline of the little owl Athene noctua in Denmark. Ibis 152:803–814CrossRefGoogle Scholar
  58. Uller T (2006) Sex-specific sibling interactions and offspring fitness in vertebrates: patterns and implications for maternal sex ratios. Biol Rev 81:207–217CrossRefGoogle Scholar
  59. van Harxen R, Stroeken P, Sterringa G (2018) Nieuwe gegevens over de eileg, broeden, uitkomst van de eieren en uitvliegen van de jongen bij de steenuil (Athene noctua). Uilen 8:76–89Google Scholar
  60. Van Nieuwenhuyse D, Génot J-C, Johnson DH (2008) The little owl: conservation, ecology and behavior of Athene noctua. Cambridge University Press, CambridgeGoogle Scholar
  61. Weatherhead PJ, Teather KL (1991) Are skewed fledgling sex ratios in sexually dimorphic birds adaptive? Am Nat 138:1159–1172CrossRefGoogle Scholar
  62. West SA (2002) Constraints in the evolution of sex ratio adjustment. Science 295:1685–1688CrossRefGoogle Scholar
  63. Zuur AF, Hilbe JM, Ieno EN (2013) A beginner’s guide to GLM and GLMM with R. Highland Statistics Ltd., NewburghGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Matthias Tschumi
    • 1
    Email author
  • Jolanda Humbel
    • 1
    • 2
  • Joscha Erbes
    • 3
  • Julien Fattebert
    • 1
    • 4
  • Jochen Fischer
    • 5
  • Gerhard Fritz
    • 6
  • Barbara Geiger
    • 7
  • Ronald van Harxen
    • 8
  • Bernd Hoos
    • 9
  • Johanna Hurst
    • 10
  • Lars Bo Jacobsen
    • 11
  • Herbert Keil
    • 12
  • Werner Kneule
    • 13
  • Vanja T. Michel
    • 1
  • Heinz Michels
    • 14
  • Leander Möbius
    • 15
  • Marco Perrig
    • 1
  • Philip Rößler
    • 16
  • Dieter Schneider
    • 17
  • Siegfried Schuch
    • 18
  • Pascal Stroeken
    • 8
  • Beat Naef-Daenzer
    • 1
  • Martin U. Grüebler
    • 1
  1. 1.Swiss Ornithological InstituteSempachSwitzerland
  2. 2.Institute of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
  3. 3.NABU Bad KreuznachPleitersheimGermany
  4. 4.School of Life SciencesUniversity of KwaZulu-NatalDurbanSouth Africa
  5. 5.BrackenheimGermany
  6. 6.BrettenGermany
  7. 7.NABU Rhein SelzDienheimGermany
  8. 8.Steenuilen Overleg Nederland (STONE)HeilooThe Netherlands
  9. 9.NeustadtGermany
  10. 10.Institute of Biology IAlbert-Ludwigs-University FreiburgFreiburgGermany
  11. 11.Center for Macroecology, Evolution and Climate, Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
  12. 12.Forschungsgemeinschaft zur Erhaltung einheimischer Eulen e.VOberriexingenGermany
  13. 13.WolfschlugenGermany
  14. 14.WolfschlungenGermany
  15. 15.ErpolzheimGermany
  16. 16.KöngenGermany
  17. 17.ErkenbrechtsweilerGermany
  18. 18.NiersteinGermany

Personalised recommendations