Advertisement

International Orthopaedics

, Volume 43, Issue 10, pp 2349–2360 | Cite as

Lateralization in reverse shoulder arthroplasty: a descriptive analysis of different implants in current practice

  • Jean-David WerthelEmail author
  • Gilles Walch
  • Emilie Vegehan
  • Pierric Deransart
  • Joaquin Sanchez-Sotelo
  • Philippe Valenti
Review Article

Abstract

Introduction

Since its first description, the concept of reverse shoulder arthroplasty (RSA) has evolved. The term lateralization remains unclear and is used to describe implants that lateralize on the glenoid side, the humeral side, or both. The objective of this study was to provide a clear definition of lateralization and to measure the lateralization achieved by the most commonly used implants.

Materials and methods

Twenty-eight different configurations with 22 different implants were analyzed. Glenoid, humeral, and global lateralization was measured on digitized templates. Implant lateralization was normalized to the lateral offset of the Delta III. Each implant was defined as a combination of one of two glenoid categories (medialized glenoid (MG), lateralized glenoid (LG), and one of four humeral categories (medialized humerus (MH), minimally lateralized humerus (LH), lateralized humerus (LH+). In addition, implants were separated in categories of 5-mm increments for global offset (medialized RSA (M-RSA), minimally lateralized RSA (ML-RSA), lateralized RSA (L-RSA), highly lateralized RSA (HL-RSA), and very highly lateralized RSA (VHL-RSA).

Results

The global lateral offset of the Delta III was 13.1 mm; global lateral offset of all designs in this study varied between 13.1 and 35.8 mm. Regarding their global lateral offset, five implants are M-RSA (lateral offset < 18.1 mm), five ML-RSA (18.1–23.1 mm), seven L-RSA (23.1–28.1 mm), six HL-RSA (28.1–33.1 mm), and one VHL-RSA (33.1–38.1 mm).

Conclusion

There is high variability in the amount of lateralization provided by the majority of RSAs currently available. This descriptive analysis can help surgeons understand the features of implants in the market based on their lateralization in order to adapt the surgical technique depending on the expected lateral offset of the design being implanted.

Keywords

Shoulder arthroplasty Lateralization Templates Humeral lateralization Glenoid lateralization 

Notes

Compliance with ethical standards

Each author certifies that his or her institution approved the human protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

Conflict of interest

Philippe Valenti and Jean-David Werthel receive royalties for shoulder prosthesis design from FH Orthopedics. Gilles Walch receives royalties for shoulder prosthesis design from Wright Medical. Joaquin Sanchez-Sotelo receives royalties for shoulder prosthesis design from Stryker.

References

  1. 1.
    Baulot E, Chabernaud D, Grammont PM (1995) Results of Grammont’s inverted prosthesis in omarthritis associated with major cuff destruction. Apropos of 16 cases. Acta Orthop Belg 61(Suppl 1):112–119PubMedGoogle Scholar
  2. 2.
    Grammont P, Laffay JP, Deries X (1987) Etude et réalisation d’une nouvelle prothèse d’épaule. Rhumatologie 39:407–418Google Scholar
  3. 3.
    Sirveaux F, Favard L, Oudet D, Huquet D, Walch G, Mole D (2004) Grammont inverted total shoulder arthroplasty in the treatment of glenohumeral osteoarthritis with massive rupture of the cuff. Results of a multicentre study of 80 shoulders. J Bone Joint Surg Br 86(3):388–395Google Scholar
  4. 4.
    Naveed MA, Kitson J, Bunker TD (2011) The Delta III reverse shoulder replacement for cuff tear arthropathy: a single-centre study of 50 consecutive procedures. J Bone Joint Surg Br 93(1):57–61.  https://doi.org/10.1302/0301-620X.93B1.24218 CrossRefGoogle Scholar
  5. 5.
    Werner CM, Steinmann PA, Gilbart M, Gerber C (2005) Treatment of painful pseudoparesis due to irreparable rotator cuff dysfunction with the Delta III reverse-ball-and-socket total shoulder prosthesis. J Bone Joint Surg Am 87(7):1476–1486.  https://doi.org/10.2106/JBJS.D.02342 CrossRefGoogle Scholar
  6. 6.
    Henninger HB, Barg A, Anderson AE, Bachus KN, Burks RT, Tashjian RZ (2012) Effect of lateral offset center of rotation in reverse total shoulder arthroplasty: a biomechanical study. J Shoulder Elb Surg 21(9):1128–1135.  https://doi.org/10.1016/j.jse.2011.07.034 CrossRefGoogle Scholar
  7. 7.
    Gutierrez S, Levy JC, Lee WE 3rd, Keller TS, Maitland ME (2007) Center of rotation affects abduction range of motion of reverse shoulder arthroplasty. Clin Orthop Relat Res 458:78–82.  https://doi.org/10.1097/BLO.0b013e31803d0f57 CrossRefPubMedGoogle Scholar
  8. 8.
    Boileau P, Watkinson DJ, Hatzidakis AM, Balg F (2005) Grammont reverse prosthesis: design, rationale, and biomechanics. J Shoulder Elb Surg 14(1 Suppl S):147S–161S.  https://doi.org/10.1016/j.jse.2004.10.006 CrossRefGoogle Scholar
  9. 9.
    Roche CP, Stroud NJ, Martin BL, Steiler CA, Flurin PH, Wright TW, DiPaola MJ, Zuckerman JD (2013) The impact of scapular notching on reverse shoulder glenoid fixation. J Shoulder Elb Surg 22(7):963–970.  https://doi.org/10.1016/j.jse.2012.10.035 CrossRefGoogle Scholar
  10. 10.
    Boileau P, Moineau G, Roussanne Y, O'Shea K (2011) Bony increased-offset reversed shoulder arthroplasty: minimizing scapular impingement while maximizing glenoid fixation. Clin Orthop Relat Res 469(9):2558–2567.  https://doi.org/10.1007/s11999-011-1775-4 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Katz D, Valenti P, Kany J, Elkholti K, Werthel J-D (2016) Does lateralisation of the Centre of rotation in reverse shoulder arthroplasty avoid scapular notching? Clinical and radiological review of one hundred and forty cases with forty five months of follow-up. Int Orthop 40(1):99–108.  https://doi.org/10.1007/s00264-015-2976-3 CrossRefPubMedGoogle Scholar
  12. 12.
    Mulieri P, Dunning P, Klein S, Pupello D, Frankle M (2010) Reverse shoulder arthroplasty for the treatment of irreparable rotator Cuff tear without glenohumeral arthritis. J Bone Joint Surg 92(15):2544–2556.  https://doi.org/10.2106/jbjs.i.00912 CrossRefPubMedGoogle Scholar
  13. 13.
    Hamilton MA, Diep P, Roche C, Flurin PH, Wright TW, Zuckerman JD, Routman H (2015) Effect of reverse shoulder design philosophy on muscle moment arms. J Orthop Res 33(4):605–613.  https://doi.org/10.1002/jor.22803 CrossRefPubMedGoogle Scholar
  14. 14.
    Boileau P, Walch G (1997) The three-dimensional geometry of the proximal humerus. Implications for surgical technique and prosthetic design. J Bone Joint Surg Br 79(5):857–865CrossRefGoogle Scholar
  15. 15.
    Boulahia A, Edwards TB, Walch G, Baratta RV (2002) Early results of a reverse design prosthesis in the treatment of arthritis of the shoulder in elderly patients with a large rotator cuff tear. Orthopedics 25(2):129–133Google Scholar
  16. 16.
    Rojas J, Joseph J, Liu B, Srikumaran U, McFarland EG (2018) Can patients manage toileting after reverse total shoulder arthroplasty? A systematic review. Int Orthop 42(10):2423–2428.  https://doi.org/10.1007/s00264-018-3900-4 CrossRefPubMedGoogle Scholar
  17. 17.
    Nyffeler RW, Werner CML, Simmen BR, Gerber C (2004) Analysis of a retrieved delta III total shoulder prosthesis. J Bone Joint Surg Br 86(8):1187–1191CrossRefGoogle Scholar
  18. 18.
    Seebauer L, Walter W, Keyl W (2005) Reverse total shoulder arthroplasty for the treatment of defect arthropathy. Oper Orthop Traumatol 17(1):1–24.  https://doi.org/10.1007/s00064-005-1119-1 CrossRefGoogle Scholar
  19. 19.
    Wall B, Nové-Josserand L, O'Connor DP, Edwards TB, Walch G (2007) Reverse total shoulder arthroplasty: a review of results according to etiology. J Bone Joint Surg Am 89(7):1476–1485.  https://doi.org/10.2106/jbjs.f.00666 CrossRefGoogle Scholar
  20. 20.
    De Wilde L, Mombert M, Van Petegem P, Verdonk R (2001) Revision of shoulder replacement with a reversed shoulder prosthesis (Delta III): report of five cases. Acta Orthop Belg 67(4):348–353PubMedGoogle Scholar
  21. 21.
    Rittmeister M, Kerschbaumer F (2001) Grammont reverse total shoulder arthroplasty in patients with rheumatoid arthritis and nonreconstructible rotator cuff lesions. J Shoulder Elb Surg 10(1):17–22.  https://doi.org/10.1067/mse.2001.110515 CrossRefGoogle Scholar
  22. 22.
    De Wilde LF, Van Ovost E, Uyttendaele D, Verdonk R (2002) Results of an inverted shoulder prosthesis after resection for tumor of the proximal humerus. Rev Chir Orthop Reparatrice Appar Mot 88(4):373–378PubMedGoogle Scholar
  23. 23.
    Vanhove B, Beugnies A (2004) Grammont’s reverse shoulder prosthesis for rotator cuff arthropathy. A retrospective study of 32 cases. Acta Orthop Belg 70(3):219–225Google Scholar
  24. 24.
    Simovitch RW, Zumstein MA, Lohri E, Helmy N, Gerber C (2007) Predictors of scapular notching in patients managed with the Delta III reverse total shoulder replacement. J Bone Joint Surg Am 89(3):588–600.  https://doi.org/10.2106/jbjs.f.00226 CrossRefGoogle Scholar
  25. 25.
    Routman HD, Flurin PH, Wright TW, Zuckerman JD, Hamilton MA, Roche CP (2015) Reverse shoulder arthroplasty prosthesis design classification system. Bull Hosp Jt Dis (2013) 73(Suppl 1):S5–S14Google Scholar
  26. 26.
    Harman M, Frankle M, Vasey M, Banks S (2005) Initial glenoid component fixation in “reverse” total shoulder arthroplasty: a biomechanical evaluation. J Shoulder Elb Surg 14(1 Suppl S):162S–167S.  https://doi.org/10.1016/j.jse.2004.09.030 CrossRefGoogle Scholar
  27. 27.
    Gutierrez S, Levy JC, Frankle MA, Cuff D, Keller TS, Pupello DR, Lee WE 3rd (2008) Evaluation of abduction range of motion and avoidance of inferior scapular impingement in a reverse shoulder model. J Shoulder Elb Surg 17(4):608–615.  https://doi.org/10.1016/j.jse.2007.11.010 CrossRefGoogle Scholar
  28. 28.
    Valenti P, Sauzieres P, Katz D, Kalouche I, Kilinc AS (2011) Do less medialized reverse shoulder prostheses increase motion and reduce notching? Clin Orthop Relat Res 469(9):2550–2557.  https://doi.org/10.1007/s11999-011-1844-8 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Boileau P, Morin-Salvo N, Gauci MO, Seeto BL, Chalmers PN, Holzer N, Walch G (2017) Angled BIO-RSA (bony-increased offset-reverse shoulder arthroplasty): a solution for the management glenoid bone loss and erosion. J Shoulder Elb Surg.  https://doi.org/10.1016/j.jse.2017.05.024 CrossRefGoogle Scholar
  30. 30.
    Ladermann A, Denard PJ, Boileau P, Farron A, Deransart P, Walch G (2018) What is the best glenoid configuration in onlay reverse shoulder arthroplasty? Int Orthop 42(6):1339–1346.  https://doi.org/10.1007/s00264-018-3850-x CrossRefPubMedGoogle Scholar
  31. 31.
    Giles JW, Langohr GD, Johnson JA, Athwal GS (2015) Implant design variations in reverse total shoulder arthroplasty influence the required deltoid force and resultant joint load. Clin Orthop Relat Res 473(11):3615–3626.  https://doi.org/10.1007/s11999-015-4526-0 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wong MT, Langohr GDG, Athwal GS, Johnson JA (2016) Implant positioning in reverse shoulder arthroplasty has an impact on acromial stresses. J Shoulder Elb Surg 25(11):1889–1895.  https://doi.org/10.1016/j.jse.2016.04.011 CrossRefGoogle Scholar
  33. 33.
    Hess F, Zettl R, Smolen D, Knoth C (2018) Anatomical reconstruction to treat acromion fractures following reverse shoulder arthroplasty. Int Orthop 42(4):875–881.  https://doi.org/10.1007/s00264-017-3710-0 CrossRefPubMedGoogle Scholar
  34. 34.
    Ladermann A, Denard PJ, Boileau P, Farron A, Deransart P, Terrier A, Ston J, Walch G (2015) Effect of humeral stem design on humeral position and range of motion in reverse shoulder arthroplasty. Int Orthop 39(11):2205–2213.  https://doi.org/10.1007/s00264-015-2984-3 CrossRefPubMedGoogle Scholar
  35. 35.
    Kirsch JM, Khan M, Thornley P, Gichuru M, Freehill MT, Neviaser A, Moravek J, Miller BS, Bedi A (2017) Platform shoulder arthroplasty: a systematic review. J Shoulder Elb Surg.  https://doi.org/10.1016/j.jse.2017.08.020 CrossRefGoogle Scholar
  36. 36.
    Erickson BJ, Frank RM, Harris JD, Mall N, Romeo AA (2015) The influence of humeral head inclination in reverse total shoulder arthroplasty: a systematic review. J Shoulder Elb Surg 24(6):988–993.  https://doi.org/10.1016/j.jse.2015.01.001 CrossRefGoogle Scholar
  37. 37.
    Franceschetti E, de Sanctis EG, Ranieri R, Palumbo A, Paciotti M, Franceschi F (2019) The role of the subscapularis tendon in a lateralized reverse total shoulder arthroplasty: repair versus nonrepair. Int Orthop.  https://doi.org/10.1007/s00264-018-4275-2
  38. 38.
    Langohr GD, Giles JW, Athwal GS, Johnson JA (2015) The effect of glenosphere diameter in reverse shoulder arthroplasty on muscle force, joint load, and range of motion. J Shoulder Elb Surg 24(6):972–979.  https://doi.org/10.1016/j.jse.2014.10.018 CrossRefGoogle Scholar
  39. 39.
    Costantini O, Choi DS, Kontaxis A, Gulotta LV (2015) The effects of progressive lateralization of the joint center of rotation of reverse total shoulder implants. J Shoulder Elb Surg 24(7):1120–1128.  https://doi.org/10.1016/j.jse.2014.11.040 CrossRefGoogle Scholar
  40. 40.
    Vourazeris JD, Wright TW, Struk AM, King JJ, Farmer KW (2017) Primary reverse total shoulder arthroplasty outcomes in patients with subscapularis repair versus tenotomy. J Shoulder Elb Surg 26(3):450–457.  https://doi.org/10.1016/j.jse.2016.09.017 CrossRefGoogle Scholar
  41. 41.
    Berhouet J, Garaud P, Favard L (2014) Evaluation of the role of glenosphere design and humeral component retroversion in avoiding scapular notching during reverse shoulder arthroplasty. J Shoulder Elb Surg 23(2):151–158.  https://doi.org/10.1016/j.jse.2013.05.009 CrossRefGoogle Scholar

Copyright information

© SICOT aisbl 2019

Authors and Affiliations

  • Jean-David Werthel
    • 1
    • 2
    Email author
  • Gilles Walch
    • 3
  • Emilie Vegehan
    • 2
  • Pierric Deransart
    • 4
  • Joaquin Sanchez-Sotelo
    • 5
  • Philippe Valenti
    • 2
  1. 1.Hôpital Ambroise ParéBoulogne-BillancourtFrance
  2. 2.Paris Shoulder UnitClinique BizetParisFrance
  3. 3.Centre Orthopédique SantyLyonFrance
  4. 4.SDODSaint Martin d’UriageFrance
  5. 5.Mayo ClinicRochesterUSA

Personalised recommendations