Skip to main content
Log in

Short stems reproduce femoral offset better than standard stems in total hip arthroplasty: a case-control study

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Introduction

In total hip arthroplasty (THA), altering the original offset can lead to poor outcome or even complications or revision when the changes are too great. The aim of the present study was to compare femoral offset between short and standard stems. The hypothesis was that the short stems studied provide better control of post–operative femoral offset.

Patients and methods

We retrospectively reviewed 100 consecutive THAs using uncemented optimys™ short stems (Mathys, Bettlach, Switzerland), matched to 100 standard stem THAs performed during the same period. The primary endpoint was femoral offset; secondary endpoints were the limb length and cervico-diaphyseal angle.

Results

The mean femoral offset increased by 6.0 ± 7.2 mm overall (p < 0.0001), 4.7 ± 6.7 mm in the short-stem group (p < 0.0001), and 7.2 ± 7.5 mm in the standard stem group (p < 0.0001), with a significant inter-group difference (p = 0.0152). Limb length showed no significant inter-group difference (p = 0.8425). Cervico-diaphyseal angle was increased by surgery overall, and more by standard than by short stems (p < 0.05).

Conclusion

Measurement of femoral offset revealed significant lateralization. It is critical that offset should be maintained in THA. The technique we use increases femoral offset, but the present study showed less increase using short than standard stems. These findings must be borne in mind to achieve good clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lecerf G, Fessy MH, Philippot R et al (2009) Femoral offset: anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty. Orthop Traumatol Surg Res 95:210–219. https://doi.org/10.1016/j.otsr.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  2. McGrory BJ, Morrey BF, Cahalan TD et al (1995) Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty. J Bone Joint Surg (Br) 77:865–869

    Article  CAS  Google Scholar 

  3. Little NJ, Busch CA, Gallagher JA et al (2009) Acetabular polyethylene wear and acetabular inclination and femoral offset. Clin Orthop 467:2895–2900. https://doi.org/10.1007/s11999-009-0845-3

    Article  PubMed  Google Scholar 

  4. Sakalkale DP, Sharkey PF, Eng K, Hozack WJ, Rothman RH (2001) Effect of femoral component offset on polyethylene wear in total hip arthroplasty. Clin Orthop Relat Res 125–34. https://doi.org/10.1097/00003086-200107000-00019

    Article  Google Scholar 

  5. Chamnongkich S, Asayama I, Kinsey TL et al (2012) Difference in hip prosthesis femoral offset affects hip abductor strength and gait characteristics during obstacle crossing. Orthop Clin N Am 43:e48–e58. https://doi.org/10.1016/j.ocl.2012.07.008

    Article  CAS  Google Scholar 

  6. Takao M, Nishii T, Sakai T, Sugano N (2016) Postoperative limb-offset discrepancy notably affects soft-tissue tension in total hip arthroplasty. J Bone Joint Surg Am 98:1548–1554. https://doi.org/10.2106/JBJS.15.01073

    Article  PubMed  Google Scholar 

  7. Erivan R, Aubret S, Villatte G et al (2017) Does using a polyethylene RM press-fit cup modify the preparation of the acetabulum and acetabular offset in primary hip arthroplasty? Orthop Traumatol Surg Res. https://doi.org/10.1016/j.otsr.2017.03.026

    CAS  Google Scholar 

  8. Cassidy KA, Noticewala MS, Macaulay W et al (2012) Effect of femoral offset on pain and function after total hip arthroplasty. J Arthroplast 27:1863–1869. https://doi.org/10.1016/j.arth.2012.05.001

    Article  Google Scholar 

  9. Flecher X, Ollivier M, Argenson JN (2016) Lower limb length and offset in total hip arthroplasty. Orthop Traumatol Surg Res 102:S9–S20. https://doi.org/10.1016/j.otsr.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  10. Wyatt MC, Kieser DC, Kemp MA et al (2018) Does the femoral offset affect replacements? The results from a National Joint Registry. Hip Int J Clin Exp Res Hip Pathol Ther:1120700018780318. https://doi.org/10.1177/1120700018780318

    Article  Google Scholar 

  11. Huo S-C, Wang F, Dong L-J et al (2016) Short-stem prostheses in primary total hip arthroplasty: a meta-analysis of randomized controlled trials. Medicine (Baltimore) 95:e5215. https://doi.org/10.1097/MD.0000000000005215

    Article  Google Scholar 

  12. Amenabar T, Marimuthu K, Hawdon G et al (2015) Total hip arthroplasty using a short-stem prosthesis: restoration of hip anatomy. J Orthop Surg Hong Kong 23:90–94. https://doi.org/10.1177/230949901502300121

    Article  PubMed  Google Scholar 

  13. Kutzner KP, Kovacevic MP, Roeder C et al (2015) Reconstruction of femoro-acetabular offsets using a short-stem. Int Orthop 39:1269–1275. https://doi.org/10.1007/s00264-014-2632-3

    Article  PubMed  Google Scholar 

  14. Kutzner KP, Pfeil J, Kovacevic MP (2017) Preoperative digital planning versus postoperative outcomes in total hip arthroplasty using a calcar-guided short stem: frequent valgization can be avoided. Eur J Orthop Surg Traumatol Orthop Traumatol 27:643–651. https://doi.org/10.1007/s00590-017-1948-2

    Article  Google Scholar 

  15. Schmidutz F, Beirer M, Weber P et al (2012) Biomechanical reconstruction of the hip: comparison between modular short-stem hip arthroplasty and conventional total hip arthroplasty. Int Orthop 36:1341–1347. https://doi.org/10.1007/s00264-011-1477-2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Matsushita A, Nakashima Y, Jingushi S et al (2009) Effects of the femoral offset and the head size on the safe range of motion in total hip arthroplasty. J Arthroplast 24:646–651. https://doi.org/10.1016/j.arth.2008.02.008

    Article  Google Scholar 

  17. Stulberg SD, Patel RM (2013) The short stem: promises and pitfalls. Bone Joint J 95-B:57–62. https://doi.org/10.1302/0301-620X.95B11.32936

    Article  CAS  PubMed  Google Scholar 

  18. Wacha H, Domsel G, Herrmann E (2018) Long-term follow-up of 1217 consecutive short-stem total hip arthroplasty (THA): a retrospective single-center experience. Eur J Trauma Emerg Surg. https://doi.org/10.1007/s00068-017-0895-2

    Article  CAS  Google Scholar 

  19. Boese CK, Bredow J, Ettinger M et al (2016) The influence of hip rotation on femoral offset following short stem Total hip arthroplasty. J Arthroplast 31:312–316. https://doi.org/10.1016/j.arth.2015.07.027

    Article  Google Scholar 

  20. Dastane M, Dorr LD, Tarwala R, Wan Z (2011) Hip offset in total hip arthroplasty: quantitative measurement with navigation. Clin Orthop 469:429–436. https://doi.org/10.1007/s11999-010-1554-7

    Article  PubMed  Google Scholar 

  21. Paprosky W, Muir J (2016) Intellijoint HIP®: a 3D mini-optical navigation tool for improving intraoperative accuracy during total hip arthroplasty. Med Devices Evid Res 9:401–408. https://doi.org/10.2147/MDER.S119161

    Article  Google Scholar 

  22. Loughenbury FA, McWilliams AB, Stewart TD et al (2018) Hip surgeons and leg length inequality after primary hip replacement. Hip Int J Clin Exp Res Hip Pathol Ther:1120700018777858. https://doi.org/10.1177/1120700018777858

    Article  Google Scholar 

  23. McWilliams AB, Lampropoulos A, Stone MH (2018) Revision surgery for leg length inequality after primary hip replacement. Hip Int J Clin Exp Res Hip Pathol Ther:1120700017752568. https://doi.org/10.1177/1120700017752568

    Article  Google Scholar 

  24. Boese CK, Bredow J, Dargel J et al (2016) Calibration marker position in digital templating of total hip arthroplasty. J Arthroplast 31:883–887. https://doi.org/10.1016/j.arth.2015.10.009

    Article  Google Scholar 

  25. Schwarze M, Budde S, von Lewinski G et al (2018) No effect of conventional vs. minimally invasive surgical approach on clinical outcome and migration of a short stem total hip prosthesis at 2-year follow-up: a randomized controlled study. Clin Biomech Bristol Avon 51:105–112. https://doi.org/10.1016/j.clinbiomech.2017.12.004

    Article  Google Scholar 

  26. Hauer G, Vielgut I, Amerstorfer F et al (2018) Survival rate of short-stem hip prostheses: a comparative analysis of clinical studies and national arthroplasty registers. J Arthroplast. https://doi.org/10.1016/j.arth.2018.01.017

    Article  Google Scholar 

  27. Yan SG, Weber P, Steinbrück A et al (2017) Periprosthetic bone remodelling of short-stem total hip arthroplasty: a systematic review. Int Orthop. https://doi.org/10.1007/s00264-017-3691-z

    Article  Google Scholar 

  28. Ortmaier R, Pichler H, Hitzl W et al (2017) Return to sport after short-stem total hip arthroplasty. Clin J Sport Med. https://doi.org/10.1097/JSM.0000000000000532

    Article  Google Scholar 

  29. Hochreiter J, Hejkrlik W, Emmanuel K et al (2017) Blood loss and transfusion rate in short stem hip arthroplasty. A comparative study. Int Orthop 41:1347–1353. https://doi.org/10.1007/s00264-016-3365-2

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Erivan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Level of evidence

IV, retrospective study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erivan, R., Muller, AS., Villatte, G. et al. Short stems reproduce femoral offset better than standard stems in total hip arthroplasty: a case-control study. International Orthopaedics (SICOT) 44, 45–51 (2020). https://doi.org/10.1007/s00264-019-04355-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-019-04355-5

Keywords

Navigation