Advertisement

International Orthopaedics

, Volume 43, Issue 4, pp 995–1002 | Cite as

The future of disc surgery and regeneration

  • Zorica BuserEmail author
  • Andrew S. Chung
  • Aidin Abedi
  • Jeffrey C. Wang
Review

Abstract

Low back and neck pain are among the top contributors for years lived with disability, causing patients to seek substantial non-operative and operative care. Intervertebral disc herniation is one of the most common spinal pathologies leading to low back pain. Patient comorbidities and other risk factors contribute to the onset and magnitude of disc herniation. Spine fusions have been the treatment of choice for disc herniation, due to the conflicting evidence on conservative treatments. However, re-operation and costs have been among the main challenges. Novel technologies including cage surface modifications, biologics, and 3D printing hold a great promise. Artificial disc replacement has demonstrated reduced rates of adjacent segment degeneration, need for additional surgery, and better outcomes. Non-invasive biological approaches are focused on cell-based therapies, with data primarily from preclinical settings. High-quality comparative studies are needed to evaluate the efficacy and safety of novel technologies and biological therapies.

Keywords

Herniation Intervertebral disc Low back pain 

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. Disclosures outside of submitted work: ZB—consultancy: Xenco Medical, AO Spine; research support: SeaSpine (paid directly to institution); JCW—Royalties—Biomet, SeaSpine, Amedica, DePuy Synthes; Investments/Options—Fziomed, Promethean, Paradigm Spine, Benvenue, Nexgen, Vertiflex, Electrocore, Surgitech, Expanding Orthopedics, Osprey, Bone Biologics, Pearldiver; Board of Directors—North American Spine Society, North American Spine Foundation, AO Foundation, Cervical Spine Research Society; Fellowship Funding (paid to institution): AO Foundation.

References

  1. 1.
    GBD 2016 Disease and Injury Incidence and Prevalence Collaborators (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet 390(10100):1211–1259.  https://doi.org/10.1016/S0140-6736(17)32154-2 CrossRefGoogle Scholar
  2. 2.
    Buser Z, Ortega B, D'Oro A, Pannell W, Cohen JR, Wang J, Golish R, Reed M, Wang JC (2018) Spine degenerative conditions and their treatments: national trends in the United States of America. Glob Spine J 8(1):57–67.  https://doi.org/10.1177/2192568217696688 CrossRefGoogle Scholar
  3. 3.
    Cummins J, Lurie JD, Tosteson TD, Hanscom B, Abdu WA, Birkmeyer NJ, Herkowitz H, Weinstein J (2006) Descriptive epidemiology and prior healthcare utilization of patients in the spine patient outcomes research trial’s (SPORT) three observational cohorts: disc herniation, spinal stenosis, and degenerative spondylolisthesis. Spine (Phila Pa 1976) 31(7):806–814CrossRefGoogle Scholar
  4. 4.
    Todd AG (2011) Cervical spine: degenerative conditions. Curr Rev Musculoskelet Med 4(4):168–174.  https://doi.org/10.1007/s12178-011-9099-2 CrossRefGoogle Scholar
  5. 5.
    Tosteson AN, Tosteson TD, Lurie JD, Abdu W, Herkowitz H, Andersson G, Albert T, Bridwell K, Zhao W, Grove MR, Weinstein MC, Weinstein JN (2011) Comparative effectiveness evidence from the spine patient outcomes research trial: surgical versus nonoperative care for spinal stenosis, degenerative spondylolisthesis, and intervertebral disc herniation. Spine (Phila Pa 1976) 36(24):2061–2068.  https://doi.org/10.1097/BRS.0b013e318235457b. CrossRefGoogle Scholar
  6. 6.
    Parker SL, Godil SS, Mendenhall SK, Zuckerman SL, Shau DN, McGirt MJ (2014) Two-year comprehensive medical management of degenerative lumbar spine disease (lumbar spondylolisthesis, stenosis, or disc herniation): a value analysis of cost, pain, disability, and quality of life: clinical article. J Neurosurg Spine 21(2):143–149.  https://doi.org/10.3171/2014.3.SPINE1320 CrossRefGoogle Scholar
  7. 7.
    Heuer F, Schmidt H, Wilke HJ (2008) Stepwise reduction of functional spinal structures increase disc bulge and surface strains. J Biomech 41(9):1953–1960.  https://doi.org/10.1016/j.jbiomech.2008.03.023 CrossRefGoogle Scholar
  8. 8.
    Smith LJ, Nerurkar NL, Choi KS, Harfe BD, Elliott DM (2011) Degeneration and regeneration of the intervertebral disc: lessons from development. Dis Model Mech 4(1):31–41.  https://doi.org/10.1242/dmm.006403 CrossRefGoogle Scholar
  9. 9.
    Stairmand JW, Holm S, Urban JP (1991) Factors influencing oxygen concentration gradients in the intervertebral disc. A theoretical analysis. Spine (Phila Pa 1976) 16(4):444–449CrossRefGoogle Scholar
  10. 10.
    Polatin PB, Kinney RK, Gatchel RJ, Lillo E, Mayer TG (1993) Psychiatric illness and chronic low-back pain. The mind and the spine--which goes first? Spine 18(1):66–71CrossRefGoogle Scholar
  11. 11.
    Le Maitre CL, Pockert A, Buttle DJ, Freemont AJ, Hoyland JA (2007) Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans 35:652–655CrossRefGoogle Scholar
  12. 12.
    Wuertz K, Haglund L (2013) Inflammatory mediators in intervertebral disk degeneration and discogenic pain. Glob Spine J 3:175–184CrossRefGoogle Scholar
  13. 13.
    Roberts S, Evans H, Trivedi J, Menage J (2006) Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 88(suppl2):10–14Google Scholar
  14. 14.
    Lotz JC, Colliou OK, Chin JR, Duncan NA, Liebenberg E (1998) Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine (Phila Pa 1976) 23(23):2493–2506CrossRefGoogle Scholar
  15. 15.
    Yong-Hing K, Kirkaldy-Willis WH (1983) The pathophysiology of degenerative disease of the lumbar spine. Orthop Clin North Am 14(3):491–504Google Scholar
  16. 16.
    Buser Z, Brodke DS, Youssef JA, Meisel H-J, Myhre SL, Hashimoto R et al (2016) Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review. J Neurosurg Spine 25:509–516.  https://doi.org/10.3171/2016.1.SPINE151005. CrossRefGoogle Scholar
  17. 17.
    Kadam A, Millhouse PW, Kepler CK, Radcliff KE, Fehlings MG, Janssen ME et al (2016) Bone substitutes and expanders in spine surgery: a review of their fusion efficacies. Int J Spine Surg 10:33.  https://doi.org/10.14444/3033 CrossRefGoogle Scholar
  18. 18.
    Lechner R, Putzer D, Liebensteiner M, Bach C, Thaler M (2017) Fusion rate and clinical outcome in anterior lumbar interbody fusion with beta-tricalcium phosphate and bone marrow aspirate as a bone graft substitute. A prospective clinical study in fifty patients. Int Orthop 41(2):333–339CrossRefGoogle Scholar
  19. 19.
    Abbah SA, Lam CXF, Ramruttun KA, Goh JCH, Wong H-K (2011) Autogenous bone marrow stromal cell sheets-loaded mPCL/TCP scaffolds induced osteogenesis in a porcine model of spinal interbody fusion. Tissue Eng Part A 17:809–817CrossRefGoogle Scholar
  20. 20.
    Bhakta G, Ekaputra AK, Rai B, Abbah SA, Tan TC, Le BQ et al (2018) Fabrication of polycaprolactone-silanated β-tricalcium phosphate-heparan sulfate scaffolds for spinal fusion applications. Spine J 18:818–830CrossRefGoogle Scholar
  21. 21.
    Han X, Zhang W, Gu J, Zhao H, Ni L, Han J et al (2014) Accelerated postero-lateral spinal fusion by collagen scaffolds modified with engineered collagen-binding human bone morphogenetic protein-2 in rats. PLoS One 9:e98480CrossRefGoogle Scholar
  22. 22.
    Arnold PM, Sasso RC, Janssen ME, Fehlings MG, Smucker JD, Vaccaro AR et al (2016) Efficacy of i-factor bone graft versus autograft in anterior cervical discectomy and fusion: results of the prospective, randomized, single-blinded Food and Drug Administration investigational device exemption study. Spine 41:1075–1083CrossRefGoogle Scholar
  23. 23.
    Arnold PM, Sasso RC, Janssen ME, Fehlings MG, Heary RF, Vaccaro AR et al (2018) i-FactorTM bone graft vs autograft in anterior cervical discectomy and fusion: 2-year follow-up of the randomized single-blinded Food and Drug Administration investigational device exemption study. Neurosurgery 83:377–384CrossRefGoogle Scholar
  24. 24.
    Olivares-Navarrete R, Gittens RA, Schneider JM, Hyzy SL, Haithcock DA, Ullrich PF et al (2012) Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone. Spine J 12:265–272CrossRefGoogle Scholar
  25. 25.
    Assem Y, Mobbs RJ, Pelletier MH, Phan K, Walsh WR (2017) Radiological and clinical outcomes of novel Ti/PEEK combined spinal fusion cages: a systematic review and preclinical evaluation. Eur Spine J 26:593–605CrossRefGoogle Scholar
  26. 26.
    Stübinger S, Drechsler A, Bürki A, Klein K, Kronen P, von Rechenberg B (2016) Titanium and hydroxyapatite coating of polyetheretherketone and carbon fiber-reinforced polyetheretherketone: a pilot study in sheep. J Biomed Mater Res B Appl Biomater 104:1182–1191CrossRefGoogle Scholar
  27. 27.
    Torstrick FB, Lin ASP, Potter D, Safranski DL, Sulchek TA, Gall K et al (2018) Porous PEEK improves the bone-implant interface compared to plasma-sprayed titanium coating on PEEK. Biomaterials 185:106–116CrossRefGoogle Scholar
  28. 28.
    Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P et al (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141CrossRefGoogle Scholar
  29. 29.
    McGilvray KC, Easley J, Seim HB, Regan D, Berven SH, Hsu WK et al (2018) Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J 18:1250–1260CrossRefGoogle Scholar
  30. 30.
    Dong L, Wang D, Chen X, Liu T, Xu Z, Tan M et al (2018) A comprehensive meta-analysis of the adjacent segment parameters in cervical disk arthroplasty versus anterior cervical discectomy and fusion. Clin Spine Surg 31:162–173CrossRefGoogle Scholar
  31. 31.
    Janssen ME, Zigler JE, Spivak JM, Delamarter RB, Darden BV, Kopjar B (2015) ProDisc-C Total disc replacement versus anterior cervical discectomy and fusion for single-level symptomatic cervical disc disease: seven-year follow-up of the prospective randomized U.S. Food and Drug Administration investigational device exemption study. J Bone Joint Surg Am 97:1738–1747CrossRefGoogle Scholar
  32. 32.
    Chang K-E, Pham MH, Hsieh PC (2017) Adjacent segment disease requiring reoperation in cervical total disc arthroplasty: a literature review and update. J Clin Neurosci 37:20–24CrossRefGoogle Scholar
  33. 33.
    Findlay C, Ayis S, Demetriades AK (2018) Total disc replacement versus anterior cervical discectomy and fusion. Bone Joint J 100-B:991–1001CrossRefGoogle Scholar
  34. 34.
    Zou S, Gao J, Xu B, Lu X, Han Y, Meng H (2017) Anterior cervical discectomy and fusion (ACDF) versus cervical disc arthroplasty (CDA) for two contiguous levels cervical disc degenerative disease: a meta-analysis of randomized controlled trials. Eur Spine J 26:985–997CrossRefGoogle Scholar
  35. 35.
    Jia Z, Mo Z, Ding F, He Q, Fan Y, Ruan D (2014) Hybrid surgery for multilevel cervical degenerative disc diseases: a systematic review of biomechanical and clinical evidence. Eur Spine J 23:1619–1632CrossRefGoogle Scholar
  36. 36.
    Lu VM, Zhang L, Scherman DB, Rao PJ, Mobbs RJ, Phan K (2017) Treating multi-level cervical disc disease with hybrid surgery compared to anterior cervical discectomy and fusion: a systematic review and meta-analysis. Eur Spine J 26:546–557CrossRefGoogle Scholar
  37. 37.
    Radcliff K, Lerner J, Yang C, Bernard T, Zigler JE (2016) Seven-year cost-effectiveness of ProDisc-C total disc replacement: results from investigational device exemption and post-approval studies. J Neurosurg Spine 24:760–768CrossRefGoogle Scholar
  38. 38.
    Kraus MD, Krischak G, Keppler P, Gebhard FT, Schuetz UHW (2010) Can computer-assisted surgery reduce the effective dose for spinal fusion and sacroiliac screw insertion? Clin Orthop Relat Res 468:2419–2429CrossRefGoogle Scholar
  39. 39.
    Shin BJ, James AR, Njoku IU, Härtl R (2012) Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine 17:113–122CrossRefGoogle Scholar
  40. 40.
    Verma R, Krishan S, Haendlmayer K, Mohsen A (2010) Functional outcome of computer-assisted spinal pedicle screw placement: a systematic review and meta-analysis of 23 studies including 5,992 pedicle screws. Eur Spine J 19:370–375CrossRefGoogle Scholar
  41. 41.
    Chachan S, Bin Abd Razak HR, Loo WL, Allen JC, Shree KD (2018) Cervical pedicle screw instrumentation is more reliable with O-arm-based 3D navigation: analysis of cervical pedicle screw placement accuracy with O-arm-based 3D navigation. Eur Spine J.  https://doi.org/10.1007/s00586-018-5585-1
  42. 42.
    Jones EL, Heller JG, Silcox DH, Hutton WC (1997) Cervical pedicle screws versus lateral mass screws. Anatomic feasibility and biomechanical comparison. Spine 22:977–982CrossRefGoogle Scholar
  43. 43.
    Luther N, Iorgulescu JB, Geannette C, Gebhard H, Saleh T, Tsiouris AJ et al (2015) Comparison of navigated versus non-navigated pedicle screw placement in 260 patients and 1434 screws: screw accuracy, screw size, and the complexity of surgery. J Spinal Disord Technol 28:E298–E303CrossRefGoogle Scholar
  44. 44.
    Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V (2011) Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J 20:860–868CrossRefGoogle Scholar
  45. 45.
    Solomiichuk V, Fleischhammer J, Molliqaj G, Warda J, Alaid A, von Eckardstein K et al (2017) Robotic versus fluoroscopy-guided pedicle screw insertion for metastatic spinal disease: a matched-cohort comparison. Neurosurg Focus 42:E13CrossRefGoogle Scholar
  46. 46.
    Cuellar JM, Stauff MP, Herzog RJ, Carrino JA, Baker GA, Carragee EJ (2016) Does provocative discography cause clinically important injury to the lumbar intervertebral disc? A 10-year matched cohort study. Spine J 16:273–280CrossRefGoogle Scholar
  47. 47.
    Hsieh AH, Hwang D, Ryan DA, Freeman AK, Kim H (2009) Degenerative anular changes induced by puncture are associated with insufficiency of disc biomechanical function. Spine (Phila Pa 1976) 34:998–1005CrossRefGoogle Scholar
  48. 48.
    Lei T, Zhang Y, Zhou Q, Luo X, Tang K, Chen R, Yu C, Quan Z (2017) A novel approach for the annulus needle puncture model of intervertebral disc degeneration in rabbits. Am J Transl Res 9:900–909Google Scholar
  49. 49.
    Daly C, Ghosh P, Jenkin G, Oehme D, Goldschlager T (2016) A review of animal models of intervertebral disc degeneration: pathophysiology, regeneration, and translation to the clinic. Biomed Res Int 2016:5952165CrossRefGoogle Scholar
  50. 50.
    Vergari C, Mansfield JC, Chan D, Clarke A, Meakin JR, Winlove PC (2017) The effects of needle damage on annulus fibrosus micromechanics. Acta Biomater 63:274–282CrossRefGoogle Scholar
  51. 51.
    Vadala G, Sowa G, Hubert M, Gilbertson LG, Denaro V, Kang JD (2012) Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation. J Tissue Eng Regen Med 6:348–355CrossRefGoogle Scholar
  52. 52.
    Vadala G, De Strobel F, Bernardini M, Denaro L, D'Avella D, Denaro V (2013) The transpedicular approach for the study of intervertebral disc regeneration strategies: in vivo characterization. Eur Spine J 22(Suppl 6):S972–S978CrossRefGoogle Scholar
  53. 53.
    Vadala G, Russo F, Pattappa G, Schiuma D, Peroglio M, Benneker LM, Grad S, Alini M, Denaro V (2013) The transpedicular approach as an alternative route for intervertebral disc regeneration. Spine (Phila Pa 1976) 38:E319–E324CrossRefGoogle Scholar
  54. 54.
    Vo NV, Hartman RA, Patil PR, Risbud MV, Kletsas D, Iatridis JC, Hoyland JA, Le Maitre CL, Sowa GA, Kang JD (2016) Molecular mechanisms of biological aging in intervertebral discs. J Orthop Res 34:1289–1306CrossRefGoogle Scholar
  55. 55.
    Lin X, Fang X, Wang Q, Hu Z, Chen K, Shan Z, Chen S, Wang J, Mo J, Ma J et al (2016) Decellularized allogeneic intervertebral disc: natural biomaterials for regenerating disc degeneration. Oncotarget 7:12121–12136Google Scholar
  56. 56.
    Fernandez C, Marionneaux A, Gill S, Mercuri J (2016) Biomimetic nucleus pulposus scaffold created from bovine caudal intervertebral disc tissue utilizing an optimal decellularization procedure. J Biomed Mater Res A 104:3093–3106CrossRefGoogle Scholar
  57. 57.
    Wachs RA, Hoogenboezem EN, Huda HI, Xin S, Porvasnik SL, Schmidt CE (2017) Creation of an injectable in situ gelling native extracellular matrix for nucleus pulposus tissue engineering. Spine J 17:435–444CrossRefGoogle Scholar
  58. 58.
    Mercuri JJ, Patnaik S, Dion G, Gill SS, Liao J, Simionescu DT (2013) Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies. Tissue Eng Part A 19:952–966CrossRefGoogle Scholar
  59. 59.
    Illien-Junger S, Sedaghatpour DD, Laudier DM, Hecht AC, Qureshi SA, Iatridis JC (2016) Development of a bovine decellularized extracellular matrix-biomaterial for nucleus pulposus regeneration. J Orthop Res 34:876–888CrossRefGoogle Scholar
  60. 60.
    Sivan SS, Roberts S, Urban JP, Menage J, Bramhill J, Campbell D, Franklin VJ, Lydon F, Merkher Y, Maroudas A, Tighe BJ (2014) Injectable hydrogels with high fixed charge density and swelling pressure for nucleus pulposus repair: biomimetic glycosaminoglycan analogues. Acta Biomater 10:1124–1133CrossRefGoogle Scholar
  61. 61.
    Li Z, Lang G, Chen X, Sacks H, Mantzur C, Tropp U, Mader KT, Smallwood TC, Sammon C, Richards RG et al (2016) Polyurethane scaffold with in situ swelling capacity for nucleus pulposus replacement. Biomaterials 84:196–209CrossRefGoogle Scholar
  62. 62.
    Choy WJ, Phan K, Diwan AD, Ong CS, Mobbs RJ (2018) Annular closure device for disc herniation: meta-analysis of clinical outcome and complications. BMC Musculoskelet Disord 19:290CrossRefGoogle Scholar
  63. 63.
    Pereira DR, Silva-Correia J, Oliveira JM, Reis RL, Pandit A, Biggs MJ (2018) Nanocellulose reinforced gellan-gum hydrogels as potential biological substitutes for annulus fibrosus tissue regeneration. Nanomedicine 14:897–908CrossRefGoogle Scholar
  64. 64.
    Kang R, Li H, Xi Z, Ringgard S, Baatrup A, Rickers K, Sun M, Le DQS, Wang M, Xie L et al (2018) Surgical repair of annulus defect with biomimetic multilamellar nano/microfibrous scaffold in a porcine model. J Tissue Eng Regen Med 12:164–174CrossRefGoogle Scholar
  65. 65.
    Li XC, Tang Y, Wu JH, Yang PS, Wang DL, Ruan DK (2017) Characteristics and potentials of stem cells derived from human degenerated nucleus pulposus: potential for regeneration of the intervertebral disc. BMC Musculoskelet Disord 18:242CrossRefGoogle Scholar
  66. 66.
    Krock E, Rosenzweig DH, Haglund L (2015) The inflammatory milieu of the degenerate disc: is mesenchymal stem cell-based therapy for intervertebral disc repair a feasible approach? Curr Stem Cell Res Ther 10:317–328CrossRefGoogle Scholar
  67. 67.
    Bertolo A, Thiede T, Aebli N, Baur M, Ferguson SJ, Stoyanov JV (2011) Human mesenchymal stem cell co-culture modulates the immunological properties of human intervertebral disc tissue fragments in vitro. Eur Spine J 20:592–603CrossRefGoogle Scholar
  68. 68.
    Pettine KA, Suzuki RK, Sand TT, Murphy MB (2017) Autologous bone marrow concentrate intradiscal injection for the treatment of degenerative disc disease with three-year follow-up. Int Orthop 41:2097–2103CrossRefGoogle Scholar
  69. 69.
    Hou Y, Shi G, Shi J, Xu G, Guo Y, Xu P (2016) Study design: in vitro and in vivo assessment of bone morphogenic protein 2 combined with platelet-rich plasma on treatment of disc degeneration. Int Orthop 40(6):1143–1155CrossRefGoogle Scholar
  70. 70.
    Leung VYL, Zhou L, Tam WK, Sun Y, Lv F, Zhou G, Cheung KMC (2017) Bone morphogenetic protein-2 and -7 mediate the anabolic function of nucleus pulposus cells with discrete mechanisms. Connect Tissue Res 58:573–585CrossRefGoogle Scholar
  71. 71.
    An HS, Takegami K, Kamada H, Nguyen CM, Thonar EJ, Singh K, Andersson GB, Masuda K (2005) Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits. Spine (Phila Pa 1976) 30:25–31 discussion 31–22CrossRefGoogle Scholar
  72. 72.
    Willems N, Bach FC, Plomp SGM, van Rijen MHP, Wolfswinkel J, Grinwis GCM, Bos C, Strijkers GJ, Dhert WJA, Meij BP et al (2015) Intradiscal application of rhBMP-7 does not induce regeneration in a canine model of spontaneous intervertebral disc degeneration. Arthritis Res Ther 17:137CrossRefGoogle Scholar
  73. 73.
    Tuakli-Wosornu YA, Terry A, Boachie-Adjei K, Harrison JR, Gribbin CK, LaSalle EE, Nguyen JT, Solomon JL, Lutz GE (2016) Lumbar intradiskal platelet-rich plasma (PRP) injections: a prospective, double-blind, randomized controlled study. PM R 8:1–10 quiz 10CrossRefGoogle Scholar
  74. 74.
    Monfett M, Harrison J, Boachie-Adjei K, Lutz G (2016) Intradiscal platelet-rich plasma (PRP) injections for discogenic low back pain: an update. Int Orthop 40(6):1321–1328CrossRefGoogle Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Orthopaedic Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Mayo ClinicPhoenixUSA

Personalised recommendations