International Orthopaedics

, Volume 43, Issue 4, pp 891–898 | Cite as

Sagittal alignment assessment after short-segment lumbar fusion for degenerative disc disease

  • Farzam Vazifehdan
  • Vasilios G. Karantzoulis
  • Vasilios G. IgoumenouEmail author
Original Paper



To investigate whether differences in spinopelvic parameters, and especially spinopelvic alignment, could be associated with adjacent segment disease (ASD) or pseudarthrosis after short-segment lumbar fusion.


Retrospective study of patients offered mono- or bisegmental transforaminal lumbar interbody fusion (TLIF) with polyetheretherketone (PEEK) or titanium cages, due to degenerative disease. Of 419 patients, 32 (7.6%) presented pseudarthrosis (nonunion group), 29 (6.9%) developed symptomatic ASD (ASD group), and 358 patients (85.5%) showed evidence of uncomplicated fusion (control group). Standard spinopelvic parameters were measured in all patients before and after surgery. The differences of the values within the parameters (Δ values) were also calculated. A comparative analysis within and among groups was performed. Patients were also analyzed by cage characteristics (large vs small, titanium vs PEEK).


All studied parameters changed significantly after surgery both in the control and ASD group, while in the nonunion group, only LL and PI-LL changed significantly (PI-LL increased from 10 ± 11° to 14 ± 10°, p = 0.008). Patients in the nonunion group presented greater SS before and after surgery, greater PI-LL after surgery, and higher PI, while ASD patients presented greater absolute mean ΔPT value. Age, size, and type of cage were not related to fusion, nonunion, or ASD.


Greater SS, greater PI, and a PI-LL mismatch greater than 10° are associated with failed bony fusion, while ASD is related to a greater difference between the pre-operative and post-operative values of PT. Neither the type nor the size of cage seem to have a significant impact on either solid bony fusion, nonunion, or ASD rates. Thus, we recommend on the study of patients’ sagittal alignment in the pre-operative setting even when treating patients with short-segment lumbar interbody fusion.


Lumbar interbody fusion PEEK Titanium Degenerative disc disease Disc herniation Sagittal alignment 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.


  1. 1.
    Tao S, Jin L, Hou Z, Zhang W, Chen T, Zhang Y (2018) A new radiographic feature of lower lumbar disc herniation in young patients. Int Orthop 42(3):583–586. CrossRefGoogle Scholar
  2. 2.
    Pettine KA, Suzuki RK, Sand TT, Murphy MB (2017) Autologous bone marrow concentrate intradiscal injection for the treatment of degenerative disc disease with three-year follow-up. Int Orthop 41(10):2097–2103. CrossRefGoogle Scholar
  3. 3.
    Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ (2015) Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg 1(1):2–18. Google Scholar
  4. 4.
    Zhang D, Gao X, Jiang J, Shen Y, Ding W, Cui H (2018) Safe placement of pedicle screw in lumbar spine with minimum three year follow-up: a case series and technical note. Int Orthop 42(3):567–573. CrossRefGoogle Scholar
  5. 5.
    Chun DS, Baker KC, Hsu WK (2015) Lumbar pseudarthrosis: a review of current diagnosis and treatment. Neurosurg Focus 39(4):E10. CrossRefGoogle Scholar
  6. 6.
    Matsumoto T, Okuda S, Maeno T, Yamashita T, Yamasaki R, Sugiura T, Iwasaki M (2017) Spinopelvic sagittal imbalance as a risk factor for adjacent-segment disease after single-segment posterior lumbar interbody fusion. J Neurosurg Spine 26(4):435–440. CrossRefGoogle Scholar
  7. 7.
    Virk SS, Niedermeier S, Yu E, Khan SN (2014) Adjacent segment disease. Orthopedics 37(8):547–555. CrossRefGoogle Scholar
  8. 8.
    Chen XL, Guan L, Liu YZ, Yang JC, Wang WL, Hai Y (2016) Interspinous dynamic stabilization adjacent to fusion versus double-segment fusion for treatment of lumbar degenerative disease with a minimum follow-up of three years. Int Orthop 40(6):1275–1283. CrossRefGoogle Scholar
  9. 9.
    Alentado VJ, Lubelski D, Healy AT, Orr RD, Steinmetz MP, Benzel EC, Mroz TE (2016) Predisposing characteristics of adjacent segment disease after lumbar fusion. Spine (Phila Pa 1976) 41(14):1167–1172. CrossRefGoogle Scholar
  10. 10.
    Lee JC, Kim Y, Soh JW, Shin BJ (2014) Risk factors of adjacent segment disease requiring surgery after lumbar spinal fusion: comparison of posterior lumbar interbody fusion and posterolateral fusion. Spine (Phila Pa 1976) 39(5):E339–E345. CrossRefGoogle Scholar
  11. 11.
    Korres D, Markatos K, Chytas D, Andreakos A, Mavrogenis A (2017) Injuries of the spine and of the spinal cord in the Hippocratic Corpus of medicine. Int Orthop 41(12):2627–2629. CrossRefGoogle Scholar
  12. 12.
    Le Huec JC, Faundez A, Dominguez D, Hoffmeyer P, Aunoble S (2015) Evidence showing the relationship between sagittal balance and clinical outcomes in surgical treatment of degenerative spinal diseases: a literature review. Int Orthop 39(1):87–95. CrossRefGoogle Scholar
  13. 13.
    Djurasovic MO, Carreon LY, Glassman SD, Dimar JR II, Puno RM, Johnson JR (2008) Sagittal alignment as a risk factor for adjacent level degeneration: a case-control study. Orthopedics 31(6):546CrossRefGoogle Scholar
  14. 14.
    Rothenfluh DA, Mueller DA, Rothenfluh E, Min K (2015) Pelvic incidence-lumbar lordosis mismatch predisposes to adjacent segment disease after lumbar spinal fusion. Eur Spine J 24(6):1251–1258. CrossRefGoogle Scholar
  15. 15.
    Hyun SJ, Kim KJ, Jahng TA, Kim HJ (2017) Clinical impact of T1 slope minus cervical lordosis after multilevel posterior cervical fusion surgery: a minimum 2-year follow up data. Spine (Phila Pa 1976) 42(24):1859–1864. CrossRefGoogle Scholar
  16. 16.
    Lafage V, Ames C, Schwab F, Klineberg E, Akbarnia B, Smith J, Boachie-Adjei O, Burton D, Hart R, Hostin R, Shaffrey C, Wood K, Bess S, International Spine Study G (2012) Changes in thoracic kyphosis negatively impact sagittal alignment after lumbar pedicle subtraction osteotomy: a comprehensive radiographic analysis. Spine (Phila Pa 1976) 37(3):E180–E187. CrossRefGoogle Scholar
  17. 17.
    Baek SW, Park YS, Ha KY, Suh SW, Kim C (2013) The analysis of spinopelvic parameters and stability following long fusions with S1, S2 or iliac fixation. Int Orthop 37(10):1973–1980. CrossRefGoogle Scholar
  18. 18.
    Geiger EV, Muller O, Niemeyer T, Kluba T (2007) Adjustment of pelvispinal parameters preserves the constant gravity line position. Int Orthop 31(2):253–258. CrossRefGoogle Scholar
  19. 19.
    Hara M, Nishimura Y, Nakajima Y, Umebayashi D, Takemoto M, Yamamoto Y, Haimoto S (2015) Transforaminal lumbar interbody fusion for lumbar degenerative disorders: mini-open TLIF and corrective TLIF. Neurol Med Chir (Tokyo) 55(7):547–556. CrossRefGoogle Scholar
  20. 20.
    Bouloussa H, Alzakri A, Ghailane S, Vergari C, Mazas S, Vital JM, Coudert P, Gille O (2017) Is it safe to perform lumbar spine surgery on patients over eighty five? Int Orthop 41(10):2091–2096. CrossRefGoogle Scholar
  21. 21.
    Cho KJ, Suk SI, Park SR, Kim JH, Kang SB, Kim HS, Oh SJ (2010) Risk factors of sagittal decompensation after long posterior instrumentation and fusion for degenerative lumbar scoliosis. Spine (Phila Pa 1976) 35(17):1595–1601. CrossRefGoogle Scholar
  22. 22.
    Boulay C, Tardieu C, Hecquet J, Benaim C, Mouilleseaux B, Marty C, Prat-Pradal D, Legaye J, Duval-Beaupere G, Pelissier J (2006) Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J 15(4):415–422. CrossRefGoogle Scholar
  23. 23.
    Duval-Beaupere G, Schmidt C, Cosson P (1992) A Barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20(4):451–462CrossRefGoogle Scholar
  24. 24.
    Legaye J, Duval-Beaupere G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7(2):99–103CrossRefGoogle Scholar
  25. 25.
    Cho W, Mason JR, Smith JS, Shimer AL, Wilson AS, Shaffrey CI, Shen FH, Novicoff WM, Fu KM, Heller JE, Arlet V (2013) Failure of lumbopelvic fixation after long construct fusions in patients with adult spinal deformity: clinical and radiographic risk factors: clinical article. J Neurosurg Spine 19(4):445–453. CrossRefGoogle Scholar
  26. 26.
    Schwab FJ, Blondel B, Bess S, Hostin R, Shaffrey CI, Smith JS, Boachie-Adjei O, Burton DC, Akbarnia BA, Mundis GM, Ames CP, Kebaish K, Hart RA, Farcy JP, Lafage V, International Spine Study G (2013) Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine (Phila Pa 1976) 38(13):E803–E812. CrossRefGoogle Scholar
  27. 27.
    Banno T, Hasegawa T, Yamato Y, Kobayashi S, Togawa D, Oe S, Mihara Y, Matsuyama Y (2017) Prevalence and risk factors of iliac screw loosening after adult spinal deformity surgery. Spine (Phila Pa 1976) 42(17):E1024–E1030. CrossRefGoogle Scholar
  28. 28.
    Lee CS, Chung SS, Park SJ, Kim DM, Shin SK (2014) Simple prediction method of lumbar lordosis for planning of lumbar corrective surgery: radiological analysis in a Korean population. Eur Spine J 23(1):192–197. CrossRefGoogle Scholar
  29. 29.
    Mehta VA, Amin A, Omeis I, Gokaslan ZL, Gottfried ON (2015) Implications of spinopelvic alignment for the spine surgeon. Neurosurgery 76(Suppl 1):S42–S56; discussion S56. CrossRefGoogle Scholar
  30. 30.
    Nemoto O, Asazuma T, Yato Y, Imabayashi H, Yasuoka H, Fujikawa A (2014) Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or titanium cages with transpedicular instrumentation. Eur Spine J 23(10):2150–2155. CrossRefGoogle Scholar
  31. 31.
    Tanida S, Fujibayashi S, Otsuki B, Masamoto K, Takahashi Y, Nakayama T, Matsuda S (2016) Vertebral endplate cyst as a predictor of nonunion after lumbar interbody fusion: comparison of titanium and polyetheretherketone cages. Spine (Phila Pa 1976) 41(20):E1216–E1222. CrossRefGoogle Scholar
  32. 32.
    Wrangel CV, Karakoyun A, Buchholz KM, Suss O, Kombos T, Woitzik J, Vajkoczy P, Czabanka M (2017) Fusion rates of intervertebral Polyetheretherketone and titanium cages without bone grafting in posterior interbody lumbar fusion surgery for degenerative lumbar instability. J Neurol Surg A Cent Eur Neurosurg 78(6):556–560. CrossRefGoogle Scholar
  33. 33.
    Seaman S, Kerezoudis P, Bydon M, Torner JC, Hitchon PW (2017) Titanium vs. polyetheretherketone (PEEK) interbody fusion: meta-analysis and review of the literature. J Clin Neurosci 44:23–29. CrossRefGoogle Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  1. 1.Spine Center Stuttgart, PaulinenhilfeDiakonie-Klinikum StuttgartStuttgartGermany
  2. 2.First Department of Orthopaedics, School of MedicineNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations