Advertisement

Customized implants for acetabular Paprosky III defects may be positioned with high accuracy in revision hip arthroplasty

  • Markus Weber
  • Lena Witzmann
  • Jan Wieding
  • Joachim Grifka
  • Tobias Renkawitz
  • Benjamin Craiovan
Original Paper
  • 58 Downloads

Abstract

Purpose

In revision hip arthroplasty, custom-made implants are one option in patients with acetabular Paprosky III defects.

Methods

In a retrospective analysis, we identified 11 patients undergoing cup revision using a custom-made implant. The accuracy of the intended position of the implant was assessed on post-operative 3D CT and compared to the pre-operative 3D planning in terms of inclination, anteversion, and centre of rotation. In addition, the accuracy of post-operative plain radiographs for measuring implant position was evaluated in relation to the 3D CT standard.

Results

We found a mean deviation between the planned and the final position of the custom-made acetabular implant on 3D CT of 3.6° ± 2.8° for inclination and of − 1.2° ± 7.0° for anteversion, respectively. Restoration of center of rotation succeeded with an accuracy of 0.3 mm ± 3.9 mm in the mediolateral (x) direction, − 1.1 mm ± 3.8 mm in the anteroposterior (y) direction, and 0.4 mm ± 3.2 mm in the craniocaudal (z) direction. The accuracy of the post-operative plain radiographs in measuring the position of the custom-made implant in relation to 3D CT was 1.1° ± 1.7° for implant inclination, − 2.6° ± 1.3° for anteversion and 1.3 mm ± 3.5 mm in the x-direction, and − 0.9 mm ± 3.8 mm in the z-direction for centre of rotation.

Conclusion

Custom-made acetabular implants can be positioned with good accuracy in Paprosky III defects according to the pre-operative planning. Plain radiographs are adequate for assessing implant position in routine follow-up.

Keywords

Total hip arthroplasty Revision Custom-made implant Acetabular Paprosky III defects 3D CT 

Notes

Acknowledgements

The support of Mr. S. Reuter during analysis of 3D-CT datasets is highly appreciated.

Compliance with ethical standards

The investigation was approved by the local medical ethics committee (No.: 17-415-101).

Conflict of interest

TR has received research support by DePuy International, Otto Bock Foundation, Deutsche Arthose Hilfe. TR’s research group “patientindividual joint replacement” is supported by the German Ministry of Education and Research (BMBF, grant number 01EZ0915). JG got research support by MSD, Novartis, De Puy, Otto Bock Foundation. Further financial support is from De Puy, Orthotech, Ozo-zours, Fischer Fussfit, Urban & Kemmler. JW is an employee for AQ implants. All other authors declare no potential conflict of interest.

Supplementary material

264_2018_4193_MOESM1_ESM.docx (21 kb)
ESM 1 (DOCX 20 kb)

References

  1. 1.
    Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370:1508–1519.  https://doi.org/10.1016/S0140-6736(07)60457-7 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hawker G, Wright J, Coyte P, Paul J, Dittus R, Croxford R, Katz B, Bombardier C, Heck D, Freund D (1998) Health-related quality of life after knee replacement. J Bone Joint Surg Am 80:163–173CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ong KL, Mowat FS, Chan N, Lau E, Halpern MT, Kurtz SM (2006) Economic burden of revision hip and knee arthroplasty in Medicare enrollees. Clin Orthop Relat Res 446:22–28.  https://doi.org/10.1097/01.blo.0000214439.95268.59 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89:780–785.  https://doi.org/10.2106/JBJS.F.00222 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Paprosky WG, Perona PG, Lawrence JM (1994) Acetabular defect classification and surgical reconstruction in revision arthroplasty. A 6-year follow-up evaluation. J Arthroplast 9:33–44CrossRefGoogle Scholar
  6. 6.
    Yu R, Hofstaetter JG, Sullivan T, Costi K, Howie DW, Solomon LB (2013) Validity and reliability of the Paprosky acetabular defect classification. Clin Orthop Relat Res 471:2259–2265.  https://doi.org/10.1007/s11999-013-2844-7 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Baauw M, van Hooff ML, Spruit M (2016) Current construct options for revision of large acetabular defects: a systematic review. JBJS Rev 4.  https://doi.org/10.2106/JBJS.RVW.15.00119 CrossRefGoogle Scholar
  8. 8.
    Baauw M, van Hellemondt GG, van Hooff ML, Spruit M (2015) The accuracy of positioning of a custom-made implant within a large acetabular defect at revision arthroplasty of the hip. Bone Joint J 97-B:780–785.  https://doi.org/10.1302/0301-620X.97B6.35129 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hirschmann MT, Konala P, Amsler F, Iranpour F, Friederich NF, Cobb JP (2011) The position and orientation of total knee replacement components: a comparison of conventional radiographs, transverse 2D-CT slices and 3D-CT reconstruction. J Bone Joint Surg Br 93:629–633.  https://doi.org/10.1302/0301-620X.93B5.25893 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kalteis T, Handel M, Herold T, Perlick L, Paetzel C, Grifka J (2006) Position of the acetabular cup -- accuracy of radiographic calculation compared to CT-based measurement. Eur J Radiol 58:294–300.  https://doi.org/10.1016/j.ejrad.2005.10.003 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bayraktar V, Weber M, von Kunow F, Zeman F, Craiovan B, Renkawitz T, Grifka J, Woerner M (2017) Accuracy of measuring acetabular cup position after total hip arthroplasty: comparison between a radiographic planning software and three-dimensional computed tomography. Int Orthop 41:731–738.  https://doi.org/10.1007/s00264-016-3240-1 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Choi HR, Anderson D, Foster S, Beal M, Lee JA, Barr C, Malchau H, McCarthy J, Kwon YM (2013) Acetabular cup positioning in revision total hip arthroplasty with Paprosky type III acetabular defects: Martell radiographic analysis. Int Orthop 37:1905–1910.  https://doi.org/10.1007/s00264-013-2008-0 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Arauz P, Peng Y, MacAuliffe J, Kwon YM (2018) In-vivo 3-dimensional gait symmetry analysis in patients with bilateral total hip arthroplasty. J Biomech 77:131–137.  https://doi.org/10.1016/j.jbiomech.2018.07.013 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR (1978) Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am 60:217–220CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Audige L, Bhandari M, Kellam J (2004) How reliable are reliability studies of fracture classifications? A systematic review of their methodologies. Acta Orthop Scand 75:184–194.  https://doi.org/10.1080/00016470412331294445 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Woerner M, Sendtner E, Springorum R, Craiovan B, Worlicek M, Renkawitz T, Grifka J, Weber M (2016) Visual intraoperative estimation of cup and stem position is not reliable in minimally invasive hip arthroplasty. Acta Orthop:1–6.  https://doi.org/10.3109/17453674.2015.1137182 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Barrack RL, Krempec JA, Clohisy JC, McDonald DJ, Ricci WM, Ruh EL, Nunley RM (2013) Accuracy of acetabular component position in hip arthroplasty. J Bone Joint Surg Am 95:1760–1768.  https://doi.org/10.2106/JBJS.L.01704 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Eilander W, Harris SJ, Henkus HE, Cobb JP, Hogervorst T (2013) Functional acetabular component position with supine total hip replacement. Bone Joint J 95-B:1326–1331.  https://doi.org/10.1302/0301-620X.95B10.31446 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Weber M, Craiovan B, Woerner ML, Schwarz T, Grifka J, Renkawitz TF (2017) Predictors of outcome after primary total joint replacement. J Arthroplast.  https://doi.org/10.1016/j.arth.2017.08.044 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Weber M, Woerner M, Messmer B, Grifka J, Renkawitz T (2017) Navigation is equal to estimation by eye and palpation in preventing psoas impingement in THA. Clin Orthop Relat Res 475:196–203.  https://doi.org/10.1007/s11999-016-5061-3 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Weber M, Weber T, Woerner M, Craiovan B, Worlicek M, Winkler S, Grifka J, Renkawitz T (2015) The impact of standard combined anteversion definitions on gait and clinical outcome within one year after total hip arthroplasty. Int Orthop 39:2323–2333.  https://doi.org/10.1007/s00264-015-2777-8 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mao Y, Xu C, Xu J, Li H, Liu F, Yu D, Zhu Z (2015) The use of customized cages in revision total hip arthroplasty for Paprosky type III acetabular bone defects. Int Orthop 39:2023–2030.  https://doi.org/10.1007/s00264-015-2965-6 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Flecher X, Appy B, Parratte S, Ollivier M, Argenson JN (2017) Use of porous tantalum components in Paprosky two and three acetabular revision. A minimum five-year follow-up of fifty one hips. Int Orthop 41:911–916.  https://doi.org/10.1007/s00264-016-3312-2 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Volpin A, Konan S, Biz C, Tansey RJ, Haddad FS (2018) Reconstruction of failed acetabular component in the presence of severe acetabular bone loss: a systematic review. Musculoskelet Surg.  https://doi.org/10.1007/s12306-018-0539-7
  25. 25.
    Weber M, Benditz A, Woerner M, Weber D, Grifka J, Renkawitz T (2017) Trainee surgeons affect operative time but not outcome in minimally invasive total hip arthroplasty. Sci Rep 7:6152.  https://doi.org/10.1038/s41598-017-06530-3 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryRegensburg University, Medical CenterBad AbbachGermany
  2. 2.AQ Implants GmbHAhrensburgGermany

Personalised recommendations