Screw tip augmentation leads to improved primary stability in the minimally invasive treatment of displaced intra-articular fractures of the calcaneus: a biomechanical study

  • Martin EichingerEmail author
  • Alexander Brunner
  • Hannes Stofferin
  • Andreas Bölderl
  • Michael Blauth
  • Werner Schmölz
Original Paper



To investigate if the stability of minimally invasive screw osteosynthesis of displaced intra-articular calcaneal fractures (DIACF) can be effectively increased by an innovative approach to screw tip augmentation.


In eight-paired human cadaver hindfoot specimens, DIACF of Sanders type IIB were treated with either standard screw osteosynthesis or with bone cement augmentation of the screw tips in the main fragments. The instrumented specimens were subjected to a cyclic loading protocol (9000 cycles, with stepwise increasing loads, 100–1000 N). The interfragment motions were quantified as tuber fragment tilt (TFT) and posterior facet inclination angle (PFIA) using a 3-D motion analysis system. Böhler’s angle (BA) was evaluated from X-rays. A load-to-failure test was performed after the cyclic loading protocol.


All but one specimen of the augmented group withstood more cycles than the respective specimens of the non-augmented group. Mean cycles to failure for the failure criterion of 5° TFT were 7299 ± 1876 vs. 3864 ± 1810, corresponding to loads of 811 N ± 195 vs. 481 N ± 180, (P = 0.043). There were no significant differences observed in the PFIAs. The failure criterion of 5° BA was reached after a mean of 7929 cycles ± 2004 in the augmented group and 4129 cycles ± 2178 in the non-augmented group, corresponding to loads of 893 N ± 200 vs. 513 N ± 218, (P = 0,090). The mean load-to-failure of the four specimens in the augmented group that completed the cyclic loading was 1969 N over a 1742–2483 N range.


Screw tip augmentation significantly improved the mechanical stability of the calcanei after osteosynthesis in terms of decreased tuber fragment tilts and less changes in Böhler’s angle.


Calcaneus fracture Screw fixation Augmentation Cement Biomechanics 



We want to thank Nora Klier for assisting with the surgical procedures and testings, Cornelia Qadri for her competent technical support and Clemens Unterwurzacher for photography and illustrations. Martin Eichinger received a research grant by DePuy Synthes, J&J Austria. Additionally, we would like to thank all body donors.


  1. 1.
    Brunner A, Muller J, Regazzoni P, Babst R (2012) Open reduction and internal fixation of OTA type C2-C4 fractures of the calcaneus with a triple-plate technique. J Foot Ankle Surg 51(3):299–307. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    van Tetering EA, Buckley RE (2004) Functional outcome (SF-36) of patients with displaced calcaneal fractures compared to SF-36 normative data. Foot Ankle Int 25(10):733–738CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Alexandridis G, Gunning AC, Leenen LP (2015) Patient-reported health-related quality of life after a displaced intra-articular calcaneal fracture: a systematic review. World J Emerg Surg 10:62. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ghorbanhoseini M, Ghaheri A, Walley KC, Kwon JY (2016) Superior tuber displacement in intra-articular calcaneus fractures. Foot Ankle Int 37(10):1076–1083. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Illert T, Rammelt S, Drewes T, Grass R, Zwipp H (2011) Stability of locking and non-locking plates in an osteoporotic calcaneal fracture model. Foot Ankle Int 32(3):307–313. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zwipp H, Rammelt S, Barthel S (2004) Calcaneal fractures–open reduction and internal fixation (ORIF). Injury 35(Suppl 2):SB46–SB54. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rammelt S, Amlang M, Sands AK, Swords M (2016) New techniques in the operative treatment of calcaneal fractures. Unfallchirurg 119(3):225–236; quiz 236–228. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schepers T (2016) Calcaneal fractures: looking beyond the meta-analyses. J Foot Ankle Surg 55(4):897–898. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tantavisut S, Phisitkul P, Westerlind BO, Gao Y, Karam MD, Marsh JL (2017) Percutaneous reduction and screw fixation of displaced intra-articular fractures of the calcaneus. Foot Ankle Int 38(4):367–374. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Weber M, Lehmann O, Sagesser D, Krause F (2008) Limited open reduction and internal fixation of displaced intra-articular fractures of the calcaneum. J Bone Joint Surg (Br) 90(12):1608–1616. CrossRefGoogle Scholar
  11. 11.
    Carow JB, Carow J, Gueorguiev B, Klos K, Herren C, Pishnamaz M, Weber CD, Nebelung S, Kim BS, Knobe M (2018) Soft tissue micro-circulation in the healthy hindfoot: a cross-sectional study with focus on lateral surgical approaches to the calcaneus. Int Orthop.
  12. 12.
    Schepers T, Backes M, Dingemans SA, de Jong VM, Luitse JSK (2017) Similar anatomical reduction and lower complication rates with the sinus tarsi approach compared with the extended lateral approach in displaced intra-articular calcaneal fractures. J Orthop Trauma 31(6):293–298. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kannus P, Niemi S, Sievanen H, Korhonen N, Parkkari J (2016) Fall-induced fractures of the calcaneus and foot in older people: nationwide statistics in Finland between 1970 and 2013 and prediction for the future. Int Orthop 40(3):509–512. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rausch S, Klos K, Wolf U, Gras M, Simons P, Brodt S, Windolf M, Gueorguiev B (2014) A biomechanical comparison of fixed angle locking compression plate osteosynthesis and cement augmented screw osteosynthesis in the management of intra articular calcaneal fractures. Int Orthop 38(8):1705–1710. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nelson JD, McIff TE, Moodie PG, Iverson JL, Horton GA (2010) Biomechanical stability of intramedullary technique for fixation of joint depressed calcaneus fracture. Foot Ankle Int 31(3):229–235. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kammerlander C, Neuerburg C, Verlaan JJ, Schmoelz W, Miclau T, Larsson S (2016) The use of augmentation techniques in osteoporotic fracture fixation. Injury 47(Suppl 2):S36–S43. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Thordarson DB, Bollinger M (2005) SRS cancellous bone cement augmentation of calcaneal fracture fixation. Foot Ankle Int 26(5):347–352. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Riederer BM, Bolt S, Brenner E, Bueno-López JL, Circulescu ARM, Davies DC, De Caro R, Gerrits PO, McHanwell S, Pais D, Paulsen F, Plaisant O, Sendemir E, Stabile I, Moxham BJ (2012) The legal and ethical framework governing body donation in Europe – 1st update on current practice. Eur J Anat 16(1):1–21Google Scholar
  19. 19.
    Hungerer S, Eberle S, Lochner S, Maier M, Hogel F, Penzkofer R, Augat P (2013) Biomechanical evaluation of subtalar fusion: the influence of screw configuration and placement. J Foot Ankle Surg 52(2):177–183. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chuckpaiwong B, Easley ME, Glisson RR (2009) Screw placement in subtalar arthrodesis: a biomechanical study. Foot Ankle Int 30(2):133–141. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gonzalez TA, Ehrlichman LK, Macaulay AA, Gitajn IL, Toussaint RJ, Zurakowski D, Kwon JY (2016) Determining measurement error for Bohler’s angle and the effect of X-ray obliquity on accuracy. Foot Ankle Spec 9(5):409–416. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Eichinger M, Schmoelz W, Brunner A, Mayr R, Boelderl A (2015) Subtalar arthrodesis stabilisation with screws in an angulated configuration is superior to the parallel disposition: a biomechanical study. Int Orthop 39(11):2275–2280. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen W, Liu B, Lv H, Su Y, Chen X, Zhu Y, Du C, Zhang X, Zhang Y (2017) Radiological study of the secondary reduction effect of early functional exercise on displaced intra-articular calcaneal fractures after internal compression fixation. Int Orthop 41(9):1953–1961. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yu S, McDonald T, Jesudason C, Stiller K, Sullivan T (2014) Orthopedic inpatients’ ability to accurately reproduce partial weight bearing orders. Orthopedics 37(1):e10–e18CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Qiang M, Chen Y, Jia X, Zhang K, Li H, Jiang Y, Zhang Y (2017) Post-operative radiological predictors of satisfying outcomes occurring after intra-articular calcaneal fractures: a three dimensional CT quantitative evaluation. Int Orthop 41(9):1945–1951. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bailey EJ, Waggoner SM, Albert MJ, Hutton WC (1997) Intraarticular calcaneus fractures: a biomechanical comparison or two fixation methods. J Orthop Trauma 11(1):34–37CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Goldzak M, Simon P, Mittlmeier T, Chaussemier M, Chiergatti R (2014) Primary stability of an intramedullary calcaneal nail and an angular stable calcaneal plate in a biomechanical testing model of intraarticular calcaneal fracture. Injury 45(Suppl 1):S49–S53. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Thordarson DB, Hedman TP, Yetkinler DN, Eskander E, Lawrence TN, Poser RD (1999) Superior compressive strength of a calcaneal fracture construct augmented with remodelable cancellous bone cement. J Bone Joint Surg Am 81(2):239–246CrossRefPubMedCentralGoogle Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  1. 1.Department of Trauma SurgeryMedical University of InnsbruckInnsbruckAustria
  2. 2.Department of Anatomy, Histology and Embryology, Division of Clinical and Functional AnatomyMedical University of InnsbruckInnsbruckAustria

Personalised recommendations