Advertisement

International Orthopaedics

, Volume 43, Issue 6, pp 1395–1403 | Cite as

Mechanism and predisposing factors for proximal tibial epiphysiolysis in adolescents during sports activities

  • Christina N. SteigerEmail author
  • Dimitri Ceroni
Original Paper
  • 95 Downloads

Abstract

Background

Proximal tibial epiphysiolysis (PTE) can have debilitating consequences for young athletes. The mechanism and predisposing factors for this lesion have yet to be determined. To find a common denominator and a biomechanical explanation for PTE, we were using a retrospective analysis of 15 cases in combination with a systematic review of literature.

Methods

A retrospective review of medical charts was performed to identify all PTE between 2003 and 2012. Records were screened for patient age and gender, sports activity, mechanism of injury, and treatment protocols. Additionally, a literature review (MEDLINE/PubMed database, the Cochrane Library, online search engines) was conducted.

Results

Medical charts of 14 adolescents (15 Salter-Harris I and II fractures) were analyzed. The literature review revealed additional 75 fractures. The predominant mechanisms were landing from a jump, takeoff for a jump, stop and go movements, and eccentric muscle contraction with the knee in flexion. The main sports-activities implicated in these injuries were basketball.

Conclusions

Landing from a jump with a decreased knee and hip flexion movement increases tensile forces on the proximal tibia epiphysis. During physiological epiphysiodesis, the growth plate displays an increased vulnerability and such increased tensile forces can lead to a growth plate failure. Neuromuscular fatigue can alter coordination and proprioceptive accuracy during landing from a vertical jump and thus perturbs sagittal shock absorption. In our opinion, trainers should instruct young athletes in techniques that help avoiding uncontrolled high impact landings.

Level of evidence: Level IV.

Keywords

Proximal tibial epiphysiolysis Atypical physeal fracture Physeal sports injury Adolescent Growth fracture Low-energy fracture 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Geneva ethics board approval (Mat-Ped 09-022R).

References

  1. 1.
    Kraus R, Ploss C, Staub L, Lieber J, Alt V, Weinberg A, Worel A, Schneidmüller D, Röder C (2006) Fractures of long bones in children and adolescents. Osteosynthesis Trauma Care 14:39–44CrossRefGoogle Scholar
  2. 2.
    Hertel P (1981) Results of surgical treatment of eminentia tears of the knee joint in childhood. An analysis of 38 cases. Unfallheilkunde 84(10):397–404Google Scholar
  3. 3.
    Mubarak SJ, Kim JR, Edmonds EW, Pring ME, Bastrom TP (2009) Classification of proximal tibial fractures in children. J Child Orthop 3(3):191–197.  https://doi.org/10.1007/s11832-009-0167-8 CrossRefGoogle Scholar
  4. 4.
    Flynn JM, Skaggs DJ, Waters PM (2014) Rockwood and Wilkins' fractures in children. Eighth Edition edn.Google Scholar
  5. 5.
    Aitken AP (1965) Fractures of the proximal tibial epiphysial cartilage. Clin Orthop Relat Res 41:92–97Google Scholar
  6. 6.
    Peterson CA, Peterson HA (1972) Analysis of the incidence of injuries to the epiphyseal growth plate. J Trauma 12(4):275–281CrossRefGoogle Scholar
  7. 7.
    Rhemrev SJ, Sleeboom C, Ekkelkamp S (2000) Epiphyseal fractures of the proximal tibia. Injury 31(3):131–134CrossRefGoogle Scholar
  8. 8.
    Shelton WR, Canale ST (1979) Fractures of the tibia through the proximal tibial epiphyseal cartilage. J Bone Joint Surg Am 61(2):167–173CrossRefGoogle Scholar
  9. 9.
    Watson-Jones R (1955) Fractures and joint injuries, vol 4, 4th edn. Williams and WilkinsGoogle Scholar
  10. 10.
    Ryu RK, Debenham JO (1985) An unusual avulsion fracture of the proximal tibial epiphysis. Case report and proposed addition to the Watson-Jones classification. Clin Orthop Relat Res (194):181–184Google Scholar
  11. 11.
    Blanks RH, Lester DK, Shaw BA (1994) Flexion-type salter II fracture of the proximal tibia. Proposed mechanism of injury and two case studies. Clin Orthop Relat Res (301):256–259Google Scholar
  12. 12.
    Inoue G, Kuboyama K, Shido T (1991) Avulsion fractures of the proximal tibial epiphysis. Br J Sports Med 25(1):52–56CrossRefGoogle Scholar
  13. 13.
    Kraus R, Berthold LD, Heiss C, Lassig M (2009) Consecutive bilateral proximal tibial fractures after minor sports trauma. Eur J Pediatr Surg 19(1):41–43.  https://doi.org/10.1055/s-2008-1038443 CrossRefGoogle Scholar
  14. 14.
    Mudgal CS, Popovitz LE, Kasser JR (2000) Flexon-type Salter-Harris I injury of the proximal tibial epiphysis. J Orthop Trauma 14(4):302–305CrossRefGoogle Scholar
  15. 15.
    Silberman WW, Murphy JL (1966) Avulsion fracture of the proximal tibial epiphysis. J Trauma 6(5):592–594CrossRefGoogle Scholar
  16. 16.
    Andriessen MJ, Mattens EC, Sleeboom C, Heij HA (2011) Bilateral proximal tibia fracture. Eur J Orthop Surg Traumatol 21(3):199–201.  https://doi.org/10.1007/s00590-010-0688-3 CrossRefGoogle Scholar
  17. 17.
    Baxmann T (2006) Die proximale Tibiaepiphysenfraktur – eine traumatologische Rarität. Akt Traumatol 2006(36):241–246.  https://doi.org/10.1055/s-2006-955872 CrossRefGoogle Scholar
  18. 18.
    Bertin KC, Goble EM (1983) Ligament injuries associated with physeal fractures about the knee. Clin Orthop Relat Res (177):188–195Google Scholar
  19. 19.
    Bracker W, Siekmann W (1987) Epiphysiolysis of the proximal tibia in high jumping. Sportverletz Sportschaden 1(3):150–151.  https://doi.org/10.1055/s-2007-993706 CrossRefGoogle Scholar
  20. 20.
    Burkhart SS, Peterson HA (1979) Fractures of the proximal tibial epiphysis. J Bone Joint Surg Am 61(7):996–1002CrossRefGoogle Scholar
  21. 21.
    Donahue JP, Brennan JF, Barron OA (2003) Combined physeal/apophyseal fracture of the proximal tibia with anterior angulation from an indirect force: report of 2 cases. Am J Orthop (Belle Mead NJ) 32(12):604–607Google Scholar
  22. 22.
    Jalgaonkar AA, Dachepalli S, Al-Wattar Z, Rao S, Kochhar T (2011) Atypical tibial tuberosity fracture in an adolescent. Orthopedics 34(6):215.  https://doi.org/10.3928/01477447-20110427-30 Google Scholar
  23. 23.
    Kafer W, Kinzl L, Sarkar MR (2008) Epiphyseal fracture of the proximal tibia: review of the literature and report of simultaneous bilateral fractures in a 13-year-old boy. Unfallchirurg 111(9):740–745.  https://doi.org/10.1007/s00113-007-1390-8 CrossRefGoogle Scholar
  24. 24.
    McGuigan JA, O'Reilly MJ, Nixon JR (1984) Popliteal arterial thrombosis resulting from disruption of the upper tibial epiphysis. Injury 16(1):49–50CrossRefGoogle Scholar
  25. 25.
    Merloz P, de Cheveigne C, Butel J, Robb JE (1987) Bilateral Salter-Harris type II upper tibial epiphyseal fractures. J Pediatr Orthop 7(4):466–467CrossRefGoogle Scholar
  26. 26.
    Ozokyay L, Michler K, Musgens J (2002) Bilateral atraumatic epiphysiolysis of the head of the tibia. Unfallchirurg 105(8):735–739CrossRefGoogle Scholar
  27. 27.
    Pace JL, McCulloch PC, Momoh EO, Nasreddine AY, Kocher MS (2013) Operatively treated type IV tibial tubercle apophyseal fractures. J Pediatr Orthop 33(8):791–796.  https://doi.org/10.1097/BPO.0b013e3182968984 CrossRefGoogle Scholar
  28. 28.
    Patari SK, Lee FY, Behrens FF (2001) Coronal split fracture of the proximal tibia epiphysis through a partially closed physis: a new fracture pattern. J Pediatr Orthop 21(4):451–455Google Scholar
  29. 29.
    Rappold G, Vischer HM (1992) Bilateral tibial head epiphysiolysis in somersault jumping. Unfallchirurgie 18(4):229–232CrossRefGoogle Scholar
  30. 30.
    Takai S, Yoshino N, Kubo Y, Suzuki M, Hirasawa Y (2000) Bilateral epiphyseal fractures of the proximal tibia within a six-month interval: a case report. J Orthop Trauma 14(8):585–588CrossRefGoogle Scholar
  31. 31.
    Trepte CT, Naumann T, Wetzel R (1988) Epiphysiolysis of the proximal tibia–an atypical sports injury? Sportverletz Sportschaden 2(4):172–177.  https://doi.org/10.1055/s-2007-993685 CrossRefGoogle Scholar
  32. 32.
    Vyas S, Ebramzadeh E, Behrend C, Silva M, Zionts LE (2010) Flexion-type fractures of the proximal tibial physis: a report of five cases and review of the literature. J Pediatr Orthop B 19(6):492–496.  https://doi.org/10.1097/BPB.0b013e32833cb764 CrossRefGoogle Scholar
  33. 33.
    Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535.  https://doi.org/10.1136/bmj.b2535 CrossRefGoogle Scholar
  34. 34.
    Ogden JA, Tross RB, Murphy MJ (1980) Fractures of the tibial tuberosity in adolescents. J Bone Joint Surg Am 62(2):205–215CrossRefGoogle Scholar
  35. 35.
    Neer CS 2nd, Horwitz BS (1965) Fractures of the proximal humeral epiphysial plate. Clin Orthop Relat Res 41:24–31CrossRefGoogle Scholar
  36. 36.
    Crimaldi S, Calderazzi F, Becherucci L, Faldini A (2003) Upper tibial physeal fracture–a case report. Proposed mechanism of injury and classification. Acta Orthop Scand 74(6):764–765CrossRefGoogle Scholar
  37. 37.
    Fung BKK (2001) Avulsion fracture of the tibial tubercle and proximal tibial physis. Hong Kong J Orthop Surg 5(1):70–73Google Scholar
  38. 38.
    Omar M, Petri M, Ettinger M, Decker S, Krettek C, Gaulke R (2013) Simultaneous bilateral transitional fractures of the proximal tibia after minor sports trauma. Case Rep Orthop 2013:724802.  https://doi.org/10.1155/2013/724802 Google Scholar
  39. 39.
    Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578CrossRefGoogle Scholar
  40. 40.
    Sell TC, Ferris CM, Abt JP, Tsai YS, Myers JB, Fu FH, Lephart SM (2007) Predictors of proximal tibia anterior shear force during a vertical stop-jump. J Orthop Res 25(12):1589–1597.  https://doi.org/10.1002/jor.20459 CrossRefGoogle Scholar
  41. 41.
    Yu B, Herman D, Preston J, Lu W, Kirkendall DT, Garrett WE (2004) Immediate effects of a knee brace with a constraint to knee extension on knee kinematics and ground reaction forces in a stop-jump task. Am J Sports Med 32(5):1136–1143.  https://doi.org/10.1177/0363546503262204 CrossRefGoogle Scholar
  42. 42.
    Lees A (1981) Methods of impact absorption when landing from a jump. Eng Med 10:207–211CrossRefGoogle Scholar
  43. 43.
    Prentice W, Voight M (2001) Impaired muscle performance: regaining muscular strength and endurance. In: Techniques in muscoloskeletal rehabilitation. McGraw-Hill, Toronto,Google Scholar
  44. 44.
    Devita P, Skelly WA (1992) Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc 24(1):108–115CrossRefGoogle Scholar
  45. 45.
    Hewett TE, Stroupe AL, Nance TA, Noyes FR (1996) Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med 24(6):765–773CrossRefGoogle Scholar
  46. 46.
    Shimokochi Y, Shultz SJ (2008) Mechanisms of noncontact anterior cruciate ligament injury. J Athl Train 43(4):396–408.  https://doi.org/10.4085/1062-6050-43.4.396 CrossRefGoogle Scholar
  47. 47.
    Yu B, Lin CF, Garrett WE (2006) Lower extremity biomechanics during the landing of a stop-jump task. Clin Biomech (Bristol, Avon) 21(3):297–305.  https://doi.org/10.1016/j.clinbiomech.2005.11.003 CrossRefGoogle Scholar
  48. 48.
    DiStefano LJ, Padua DA, DiStefano MJ, Marshall SW (2009) Influence of age, sex, technique, and exercise program on movement patterns after an anterior cruciate ligament injury prevention program in youth soccer players. Am J Sports Med 37(3):495–505.  https://doi.org/10.1177/0363546508327542 CrossRefGoogle Scholar
  49. 49.
    Dufek JS, Bates BT (1991) Biomechanical factors associated with injury during landing in jump sports. Sports Med 12(5):326–337CrossRefGoogle Scholar
  50. 50.
    Lim BO, Lee YS, Kim JG, An KO, Yoo J, Kwon YH (2009) Effects of sports injury prevention training on the biomechanical risk factors of anterior cruciate ligament injury in high school female basketball players. Am J Sports Med 37(9):1728–1734.  https://doi.org/10.1177/0363546509334220 CrossRefGoogle Scholar
  51. 51.
    Orishimo KF, Kremenic IJ, Pappas E, Hagins M, Liederbach M (2009) Comparison of landing biomechanics between male and female professional dancers. Am J Sports Med 37(11):2187–2193.  https://doi.org/10.1177/0363546509339365 CrossRefGoogle Scholar
  52. 52.
    Pfeiffer RP, Shea KG, Roberts D, Grandstrand S, Bond L (2006) Lack of effect of a knee ligament injury prevention program on the incidence of noncontact anterior cruciate ligament injury. J Bone Joint Surg Am 88(8):1769–1774.  https://doi.org/10.2106/JBJS.E.00616 CrossRefGoogle Scholar
  53. 53.
    Lephart SM, Fu FH (1995) The role of proprioception in the treatment of sports injuries. Sports Exerc Injury 1:96–102Google Scholar
  54. 54.
    Chappell JD, Herman DC, Knight BS, Kirkendall DT, Garrett WE, Yu B (2005) Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am J Sports Med 33(7):1022–1029.  https://doi.org/10.1177/0363546504273047 CrossRefGoogle Scholar
  55. 55.
    Louw Q, Grimmer K, Vaughan C (2006) Knee movement patterns of injured and uninjured adolescent basketball players when landing from a jump: a case-control study. BMC Musculoskelet Disord 7:22.  https://doi.org/10.1186/1471-2474-7-22 CrossRefGoogle Scholar
  56. 56.
    Pfeifer CE, Beattie PF, Sacko RS, Hand A (2018) Risk factors associated with non-contact anterior cruciate ligament injury: a systematic review. Int J Sports Phys Ther 13(4):575–587CrossRefGoogle Scholar
  57. 57.
    Hewett TE, Myer GD, Ford KR, Paterno MV, Quatman CE (2016) Mechanisms, prediction, and prevention of ACL injuries: cut risk with three sharpened and validated tools. J Orthop Res 34(11):1843–1855.  https://doi.org/10.1002/jor.23414 CrossRefGoogle Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  1. 1.Département de l’enfant et de l’adolescent, Service d’orthopédie pédiatriqueHôpitaux Universitaires de GenèveGenèveSwitzerland

Personalised recommendations