International Orthopaedics

, Volume 43, Issue 1, pp 151–158 | Cite as

Total knee arthroplasty in the varus knee: tips and tricks

  • Roberto Rossi
  • Umberto Cottino
  • Matteo Bruzzone
  • Federico Dettoni
  • Davide Edoardo Bonasia
  • Federica RossoEmail author
Review Article


Varus knee deformity is very common, and it can be classified according to the severity and reducibility of the deformity. Pre-operative planning is mandatory to obtain a good result. Both clinical and radiological planning should be carefully performed, particularly focused on collateral ligament deficiency. In most of the cases, a postero-stabilized implant is necessary, but in the presence of a varus thrust, a midlevel constrained (MLC) implant may be necessary. Rarely, if a severe extra-articular deformity is present, a femoral osteotomy and a high constrain implant may be necessary. In most of the cases, a standard midline approach can be performed. Soft tissue balancing is crucial, avoiding excessive releases of the medial collateral ligament (MCL). In the presence of severe deformity, more aggressive procedure such as tibial reduction osteotomy or sliding medial epicondyle osteotomy can be performed. In literature, good outcomes are reported for total knee arthroplasty (TKA) in varus deformity. In this manuscript, the available literature on TKA in varus deformity is analyzed, and the preferred surgical techniques of the authors are described.


Varus Knee Deformity Total knee arthroplasty Outcomes 


Compliance with ethical standards

Conflict of interest

Roberto Rossi is a teaching consultant for Zimmer Biomet ®, Depuy Mitek ®, and Smith & Nephew €. The other authors declare that they have no conflict of interest.


  1. 1.
    Verdonk PC, Pernin J, Pinaroli A, Ait Si Selmi T, Neyret P (2009) Soft tissue balancing in varus total knee arthroplasty: an algorithmic approach. Knee Surg Sports Traumatol Arthrosc 17:660–666. CrossRefGoogle Scholar
  2. 2.
    Mullaji A, Marawar S, Sharma A (2007) Correcting varus deformity. J Arthroplast 22:15–19. CrossRefGoogle Scholar
  3. 3.
    Thienpont E, Schwab PE, Cornu O, Bellemans J, Victor J (2017) Bone morphotypes of the varus and valgus knee. Arch Orthop Trauma Surg 137:393–400. CrossRefGoogle Scholar
  4. 4.
    Mihalko WM, Saleh KJ, Krackow KA, Whiteside LA (2009) Soft-tissue balancing during total knee arthroplasty in the varus knee. J Am Acad Orthop Surg 17:766–774CrossRefGoogle Scholar
  5. 5.
    Bellemans J, Colyn W, Vandenneucker H, Victor J (2012) The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res 470:45–53. CrossRefGoogle Scholar
  6. 6.
    Vandekerckhove PTK, Matlovich N, Teeter MG, MacDonald SJ, Howard JL, Lanting BA (2017) The relationship between constitutional alignment and varus osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 25:2873–2879. CrossRefGoogle Scholar
  7. 7.
    Gao F, Ma J, Sun W, Guo W, Li Z, Wang W (2016) The influence of knee malalignment on the ankle alignment in varus and valgus gonarthrosis based on radiographic measurement. Eur J Radiol 85:228–232. CrossRefGoogle Scholar
  8. 8.
    Norton AA, Callaghan JJ, Amendola A, Phisitkul P, Wongsak S, Liu SS, Fruehling-Wall C (2015) Correlation of knee and hindfoot deformities in advanced knee OA: compensatory hindfoot alignment and where it occurs. Clin Orthop Relat Res 473:166–174. CrossRefGoogle Scholar
  9. 9.
    Mullaji A, Shetty GM (2011) Persistent hindfoot valgus causes lateral deviation of weightbearing axis after total knee arthroplasty. Clin Orthop Relat Res 469:1154–1160. CrossRefGoogle Scholar
  10. 10.
    De Muylder J, Victor J, Cornu O, Kaminski L, Thienpont E (2015) Total knee arthroplasty in patients with substantial deformities using primary knee components. Knee Surg Sports Traumatol Arthrosc 23:3653–3659. CrossRefGoogle Scholar
  11. 11.
    Mullaji AB, Shetty GM (2014) Correction of varus deformity during TKA with reduction osteotomy. Clin Orthop Relat Res 472:126–132. CrossRefGoogle Scholar
  12. 12.
    Thienpont E, Parvizi J (2016) A new classification for the varus knee. J Arthroplast 31:2156–2160. CrossRefGoogle Scholar
  13. 13.
    Rossi R, Rosso F, Cottino U, Dettoni F, Bonasia DE, Bruzzone M (2014) Total knee arthroplasty in the valgus knee. Int Orthop 38:273–283. CrossRefGoogle Scholar
  14. 14.
    Tanzer M, Makhdom AM (2016) Preoperative planning in primary total knee arthroplasty. J Am Acad Orthop Surg 24:220–230. CrossRefGoogle Scholar
  15. 15.
    Mullaji AB, Shetty GM (2016) Correcting deformity in total knee arthroplasty: techniques to avoid the release of collateral ligaments in severely deformed knees. Bone Joint J 98-B:101–104. CrossRefGoogle Scholar
  16. 16.
    Mullaji A, Lingaraju AP, Shetty GM (2012) Computer-assisted total knee replacement in patients with arthritis and a recurvatum deformity. J Bone Joint Surg Br 94:642–647. CrossRefGoogle Scholar
  17. 17.
    Jenkinson ML, Bliss MR, Brain AT, Scott DL (1989) Peripheral arthritis in the elderly: a hospital study. Ann Rheum Dis 48:227–231CrossRefGoogle Scholar
  18. 18.
    Meftah M, Blum YC, Raja D, Ranawat AS, Ranawat CS (2012) Correcting fixed varus deformity with flexion contracture during total knee arthroplasty: the “inside-out” technique: AAOS exhibit selection. J Bone Joint Surg Am 94:e66. CrossRefGoogle Scholar
  19. 19.
    Noyes FR, Barber-Westin SD, Hewett TE (2000) High tibial osteotomy and ligament reconstruction for varus angulated anterior cruciate ligament-deficient knees. Am J Sports Med 28:282–296. CrossRefGoogle Scholar
  20. 20.
    Mullaji A, Shetty GM (2009) Computer-assisted total knee arthroplasty for arthritis with extra-articular deformity. J Arthroplast 24(1164–1169):e1161. Google Scholar
  21. 21.
    Laskin RS (1996) The Insall Award. Total knee replacement with posterior cruciate ligament retention in patients with a fixed varus deformity. Clin Orthop Relat Res 331:29–34Google Scholar
  22. 22.
    Adravanti P, Vasta S (2017) Varus-valgus constrained implants in total knee arthroplasty: indications and technique. Acta Biomed 88:112–117. Google Scholar
  23. 23.
    Pancio SI, Sousa PL, Krych AJ, Abdel MP, Levy BA, Dahm DL, Stuart MJ (2017) Increased risk of revision, reoperation, and implant constraint in TKA after multiligament knee surgery. Clin Orthop Relat Res 475:1618–1626. CrossRefGoogle Scholar
  24. 24.
    Lachiewicz PF, Soileau ES (2006) Ten-year survival and clinical results of constrained components in primary total knee arthroplasty. J Arthroplast 21:803–808. CrossRefGoogle Scholar
  25. 25.
    Crawford DA, Law JI, Lombardi AV, Jr., Berend KR (2018) Midlevel constraint without stem extensions in primary total knee arthroplasty provides stability without compromising fixation. J Arthroplast. 33(9):2800–2803.
  26. 26.
    Clayton ML, Thompson TR, Mack RP (1986) Correction of alignment deformities during total knee arthroplasties: staged soft-tissue releases. Clin Orthop Relat Res 202:117–124Google Scholar
  27. 27.
    Engh GA (2003) The difficult knee: severe varus and valgus. Clin Orthop Relat Res 416:58–63.
  28. 28.
    Luring C, Bathis H, Hufner T, Grauvogel C, Perlick L, Grifka J (2006) Gap configuration and anteroposterior leg axis after sequential medial ligament release in rotating-platform total knee arthroplasty. Acta Orthop 77:149–155. CrossRefGoogle Scholar
  29. 29.
    Warren LA, Marshall JL, Girgis F (1974) The prime static stabilizer of the medical side of the knee. J Bone Joint Surg Am 56:665–674CrossRefGoogle Scholar
  30. 30.
    Markolf KL, Mensch JS, Amstutz HC (1976) Stiffness and laxity of the knee--the contributions of the supporting structures. A quantitative in vitro study. J Bone Joint Surg Am 58:583–594CrossRefGoogle Scholar
  31. 31.
    Mullaji A, Sharma A, Marawar S, Kanna R (2009) Quantification of effect of sequential posteromedial release on flexion and extension gaps: a computer-assisted study in cadaveric knees. J Arthroplast 24:795–805. CrossRefGoogle Scholar
  32. 32.
    Niki Y, Nagura T, Nagai K, Kobayashi S, Harato K (2018) Kinematically aligned total knee arthroplasty reduces knee adduction moment more than mechanically aligned total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 26:1629–1635. CrossRefGoogle Scholar
  33. 33.
    Eckhoff DG, Bach JM, Spitzer VM, Reinig KD, Bagur MM, Baldini TH, Flannery NM (2005) Three-dimensional mechanics, kinematics, and morphology of the knee viewed in virtual reality. J Bone Joint Surg Am 87(Suppl 2):71–80. Google Scholar
  34. 34.
    Eckhoff D, Hogan C, DiMatteo L, Robinson M, Bach J (2007) Difference between the epicondylar and cylindrical axis of the knee. Clin Orthop Relat Res 461:238–244. Google Scholar
  35. 35.
    Liau JJ, Cheng CK, Huang CH, Lee YM, Chueh SC, Lo WH (1999) The influence of contact alignment of the tibiofemoral joint of the prostheses in in vitro biomechanical testing. Clin Biomech (Bristol, Avon) 14:717–721CrossRefGoogle Scholar
  36. 36.
    Werner FW, Ayers DC, Maletsky LP, Rullkoetter PJ (2005) The effect of valgus/varus malalignment on load distribution in total knee replacements. J Biomech 38:349–355. CrossRefGoogle Scholar
  37. 37.
    Chang AH, Moisio KC, Chmiel JS, Eckstein F, Guermazi A, Prasad PV, Zhang Y, Almagor O, Belisle L, Hayes K, Sharma L (2015) External knee adduction and flexion moments during gait and medial tibiofemoral disease progression in knee osteoarthritis. Osteoarthr Cartil 23:1099–1106. CrossRefGoogle Scholar
  38. 38.
    Sharma L, Hurwitz DE, Thonar EJ, Sum JA, Lenz ME, Dunlop DD, Schnitzer TJ, Kirwan-Mellis G, Andriacchi TP (1998) Knee adduction moment, serum hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis. Arthritis Rheum 41:1233–1240.<1233::AID-ART14>3.0.CO;2-L CrossRefGoogle Scholar
  39. 39.
    Mahmoudian A, van Dieen JH, Bruijn SM, Baert IA, Faber GS, Luyten FP, Verschueren SM (2016) Varus thrust in women with early medial knee osteoarthritis and its relation with the external knee adduction moment. Clin Biomech (Bristol, Avon) 39:109–114. CrossRefGoogle Scholar
  40. 40.
    Miller EJ, Pagnano MW, Kaufman KR (2014) Tibiofemoral alignment in posterior stabilized total knee arthroplasty: static alignment does not predict dynamic tibial plateau loading. J Orthop Res 32:1068–1074. CrossRefGoogle Scholar
  41. 41.
    Vanlommel L, Vanlommel J, Claes S, Bellemans J (2013) Slight undercorrection following total knee arthroplasty results in superior clinical outcomes in varus knees. Knee Surg Sports Traumatol Arthrosc 21:2325–2330. CrossRefGoogle Scholar
  42. 42.
    Chang CB, Koh IJ, Seo ES, Kang YG, Seong SC, Kim TK (2011) The radiographic predictors of symptom severity in advanced knee osteoarthritis with varus deformity. Knee 18:456–460. CrossRefGoogle Scholar
  43. 43.
    Lo GH, Tassinari AM, Driban JB, Price LL, Schneider E, Majumdar S, McAlindon TE (2012) Cross-sectional DXA and MR measures of tibial periarticular bone associate with radiographic knee osteoarthritis severity. Osteoarthr Cartil 20:686–693. CrossRefGoogle Scholar
  44. 44.
    Dixon MC, Parsch D, Brown RR, Scott RD (2004) The correction of severe varus deformity in total knee arthroplasty by tibial component downsizing and resection of uncapped proximal medial bone. J Arthroplast 19:19–22CrossRefGoogle Scholar
  45. 45.
    Mullaji AB, Padmanabhan V, Jindal G (2005) Total knee arthroplasty for profound varus deformity: technique and radiological results in 173 knees with varus of more than 20 degrees. J Arthroplast 20:550–561. CrossRefGoogle Scholar
  46. 46.
    Ritter MA, Faris GW, Faris PM, Davis KE (2004) Total knee arthroplasty in patients with angular varus or valgus deformities of > or = 20 degrees. J Arthroplast 19:862–866CrossRefGoogle Scholar
  47. 47.
    Mullaji AB, Shetty GM (2013) Surgical technique: computer-assisted sliding medial condylar osteotomy to achieve gap balance in varus knees during TKA. Clin Orthop Relat Res 471:1484–1491. CrossRefGoogle Scholar
  48. 48.
    Teeny SM, Krackow KA, Hungerford DS, Jones M (1991) Primary total knee arthroplasty in patients with severe varus deformity. A comparative study. Clin Orthop Relat Res 273:19–31Google Scholar
  49. 49.
    Bellemans J, Vandenneucker H, Van Lauwe J, Victor J (2010) A new surgical technique for medial collateral ligament balancing: multiple needle puncturing. J Arthroplast 25:1151–1156. CrossRefGoogle Scholar
  50. 50.
    Rames RD, Mathison M, Meyer Z, Barrack RL, Nam D (2018) No impact of under-correction and joint line obliquity on clinical outcomes of total knee arthroplasty for the varus knee. Knee Surg Sports Traumatol Arthrosc 26:1506–1514. CrossRefGoogle Scholar
  51. 51.
    Goudarz Mehdikhani K, Morales Moreno B, Reid JJ, de Paz NA, Lee YY, Gonzalez Della Valle A (2016) An algorithmic, pie-crusting medial soft tissue release reduces the need for constrained inserts patients with severe varus deformity undergoing total knee arthroplasty. J Arthroplast 31:1465–1469. CrossRefGoogle Scholar
  52. 52.
    Puliero B, Favreau H, Eichler D, Adam P, Bonnomet F, Ehlinger M (2018) Total knee arthroplasty in patients with varus deformities greater than ten degrees: survival analysis at a mean ten year follow-up. Int Orthop.
  53. 53.
    Karachalios T, Sarangi PP, Newman JH (1994) Severe varus and valgus deformities treated by total knee arthroplasty. J Bone Joint Surg Br 76:938–942CrossRefGoogle Scholar
  54. 54.
    Liu HC, Kuo FC, Huang CC, Wang JW (2015) Mini-midvastus total knee arthroplasty in patients with severe varus deformity. Orthopedics 38:e112–e117. CrossRefGoogle Scholar
  55. 55.
    Saragaglia D, Sigwalt L, Gaillot J, Morin V, Rubens-Duval B, Pailhe R (2018) Results with eight and a half years average follow-up on two hundred and eight e-motion FP (R) knee prostheses, fitted using computer navigation for knee osteoarthritis in patients with over ten degrees genu varum. Int Orthop 42:799–804. CrossRefGoogle Scholar
  56. 56.
    Czekaj J, Fary C, Gaillard T, Lustig S (2017) Does low-constraint mobile bearing knee prosthesis give satisfactory results for severe coronal deformities? A five to twelve year follow up study. Int Orthop 41:1369–1377. CrossRefGoogle Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  • Roberto Rossi
    • 1
    • 2
  • Umberto Cottino
    • 1
  • Matteo Bruzzone
    • 1
  • Federico Dettoni
    • 1
  • Davide Edoardo Bonasia
    • 1
  • Federica Rosso
    • 1
    Email author
  1. 1.AO Ordine Mauriziano, Orthopaedics and Traumatology DepartmentTurinItaly
  2. 2.University of Study of TurinTurinItaly

Personalised recommendations