Advertisement

International Orthopaedics

, Volume 43, Issue 7, pp 1559–1566 | Cite as

Procedure for single-stage implant retention for chronic periprosthetic infection using topical degradable calcium-based antibiotics

  • Yves GramlichEmail author
  • Gerhard Walter
  • Alexander Klug
  • Johannes Harbering
  • Matthias Kemmerer
  • Reinhard Hoffmann
Original Paper

Abstract

Introduction

Surgical treatment using DAIR (debridement, systemic antibiotics, and implant retention) can lead to high rates of treatment success in cases of early periprosthetic joint infection (PJI) but can fail in late-onset cases. Supplementary local antibiotic therapy is not yet generally established and lacks evidence-based proof of efficacy. The aim of this study was to analyze DAIR outcomes in recurrent PJI cases and patients who are not suitable for a two-stage exchange, using additional degradable calcium-based antibiotics.

Methods

All patients fulfilled the Infectious Diseases Society of America (IDSA) guidelines for chronic late-onset PJI but were not suitable for a multistage procedure because of their individual operation risk. A total of 42 patients (mean age, 73 years) were treated using a single-stage algorithm consisting of DAIR, followed by implantation of degradable antibiotics chosen in accordance with an antibiogram. OSTEOSET® (admixed ceftriaxone/vancomycin/tobramycin) and Herafill-Gentamycin® were used as carrier systems. The follow-up period was 23 months (± SD, 10.3). The study is based on institutional review board (IRB) approval.

Results

The clinical entities were chronic PJI of the hip (45.2%), knee (28.6%), and knee arthrodesis (26.2%). The bacterial spectrum was composed of Staphylococcus epidermidis (29%), Staphylococcus aureus (21%), and Enterococcus faecalis (21%). 21.4% showed a combination of two or more bacteria. In 73.8%, permanent remission was achieved, while 11.9% showed chronic PJI under implant retention. Implant retention could be achieved in 85.7%.

Conclusion

DAIR usually shows low levels of success in difficult-to-treat cases. However, we could demonstrate the successful treatment of patients with recurrent PJI (typically considered DAIR-inappropriate) using degradable antibiogram-based topical calcium-based antibiotics. Over 70% of the cases went to remission and over 85% of the implants could be retained.

Keywords

Herafill OSTEOSET PJI Periprosthetic infection DAIR Implant retention 

Notes

Compliance with ethical standards

The study is based on institutional review board (IRB) approval.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Dieter C, Wirtz CR, Reichel H, (HRSG.) (eds) (2008) Revisionsendoprothetik der Hüftpfanne, vol 1. Heiko Reichel, HeidelbergGoogle Scholar
  2. 2.
    Sporer SM, Paprosky WG (2006) The use of a trabecular metal acetabular component and trabecular metal augment for severe acetabular defects. J Arthroplast 21(6 Suppl 2):83–86.  https://doi.org/10.1016/j.arth.2006.05.008 CrossRefGoogle Scholar
  3. 3.
    Yu R, Hofstaetter JG, Sullivan T, Costi K, Howie DW, Solomon LB (2013) Validity and reliability of the Paprosky acetabular defect classification. Clin Orthop Relat Res 471(7):2259–2265.  https://doi.org/10.1007/s11999-013-2844-7 CrossRefGoogle Scholar
  4. 4.
    Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J (2012) Economic burden of periprosthetic joint infection in the United States. J Arthroplast 27(8 Suppl):61–65CrossRefGoogle Scholar
  5. 5.
    Roger PM, Tabutin J, Blanc V, Leotard S, Brofferio P, Lecule F, Redreau B, Bernard E, Reso Infectio Paca E (2015) Prosthetic joint infection: a pluridisciplinary multi-center audit bridging quality of care and outcome. Med Mal Infect 45(6):229–236.  https://doi.org/10.1016/j.medmal.2015.04.003 CrossRefGoogle Scholar
  6. 6.
    Muhlhofer HM, Schauwecker J, Banke IJ, von Eisenhart-Rothe R (2015) Septic endoprosthesis exchange: preoperative diagnosis and reimplantation. Orthopade 44(12):946–951CrossRefGoogle Scholar
  7. 7.
    Maillet M, Pavese P, Bruley D, Seigneurin A, Francois P (2015) Is prosthesis retention effective for chronic infections in hip arthroplasties? A systematic literature review. Eur J Clin Microbiol Infect Dis 34(8):1495–1502.  https://doi.org/10.1007/s10096-015-2388-8 CrossRefGoogle Scholar
  8. 8.
    Yoon YC, Lakhotia D, Oh JK, Moon JG, Prashant K, Shon WY (2015) Is two-stage reimplantation effective for virulent pathogenic infection in a periprosthetic hip? A retrospective analysis. World J Orthop 6(9):712–718.  https://doi.org/10.5312/wjo.v6.i9.712 CrossRefGoogle Scholar
  9. 9.
    Kunutsor SK, Whitehouse MR, Lenguerrand E, Blom AW, Beswick AD, Team I (2016) Re-infection outcomes following one- and two-stage surgical revision of infected knee prosthesis: a systematic review and meta-analysis. PLoS One 11(3):e0151537Google Scholar
  10. 10.
    Wongworawat MD (2013) Clinical faceoff: one- versus two-stage exchange arthroplasty for prosthetic joint infections. Clin Orthop Relat Res 471(6):1750–1753.  https://doi.org/10.1007/s11999-013-2882-1 CrossRefGoogle Scholar
  11. 11.
    Kapadia BH, Banerjee S, Cherian JJ, Bozic KJ, Mont MA (2016) The economic impact of periprosthetic infections after total hip arthroplasty at a specialized tertiary-care center. J Arthroplast.  https://doi.org/10.1016/j.arth.2016.01.021
  12. 12.
    Kamath AF, Ong KL, Lau E, Chan V, Vail TP, Rubash HE, Berry DJ, Bozic KJ (2015) Quantifying the burden of revision total joint arthroplasty for periprosthetic infection. J Arthroplast 30(9):1492–1497CrossRefGoogle Scholar
  13. 13.
    Lamagni T (2014) Epidemiology and burden of prosthetic joint infections. J Antimicrob Chemother 69(1):5–10Google Scholar
  14. 14.
    Peel TN, Dowsey MM, Buising KL, Liew D, Choong PF (2013) Cost analysis of debridement and retention for management of prosthetic joint infection. Clin Microbiol Infect 19(2):181–186CrossRefGoogle Scholar
  15. 15.
    Qasim SN, Swann A, Ashford R (2017) The DAIR (debridement, antibiotics and implant retention) procedure for infected total knee replacement–a literature review. SICOT-J 3Google Scholar
  16. 16.
    Sendi P, Lotscher PO, Kessler B, Graber P, Zimmerli W, Clauss M (2017) Debridement and implant retention in the management of hip periprosthetic joint infection: outcomes following guided and rapid treatment at a single centre. Bone Joint J 99(3):330–336Google Scholar
  17. 17.
    Webb JE, Schleck CD, Larson DR, Lewallen DG, Trousdale RT (2014) Mortality of elderly patients after two-stage reimplantation for total joint infection: a case-control study. J Arthroplast 29(11):2206–2210CrossRefGoogle Scholar
  18. 18.
    Leite PS, Figueiredo S, Sousa R (2016) Prosthetic joint infection: report on the one versus two-stage exchange EBJIS survey. J Bone Joint Infect 1:1–6CrossRefGoogle Scholar
  19. 19.
    Nagra NS, Hamilton TW, Ganatra S, Murray DW, Pandit H (2016) One-stage versus two-stage exchange arthroplasty for infected total knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc 24(10):3106–3114CrossRefGoogle Scholar
  20. 20.
    Osmon D, Berbari E, Berendt A, Lew D, Zimmerli W, Steckelberg J, Rao N, Hanssen A, Wilson W, Infectious Diseases Society of A (2013) Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 56(1):e1–e25CrossRefGoogle Scholar
  21. 21.
    Lora-Tamayo J, Senneville E, Ribera A, Bernard L, Dupon M, Zeller V, Li HK, Arvieux C, Clauss M, Uckay I, Vigante D, Ferry T, Iribarren JA, Peel TN, Sendi P, Miksic NG, Rodriguez-Pardo D, Del Toro MD, Fernandez-Sampedro M, Dapunt U, Huotari K, Davis JS, Palomino J, Neut D, Clark BM, Gottlieb T, Trebse R, Soriano A, Bahamonde A, Guio L, Rico A, Salles MJC, Pais MJG, Benito N, Riera M, Gomez L, Aboltins CA, Esteban J, Horcajada JP, O’Connell K, Ferrari M, Skaliczki G, Juan RS, Cobo J, Sanchez-Somolinos M, Ramos A, Giannitsioti E, Jover-Saenz A, Baraia-Etxaburu JM, Barbero JM, Choong PFM, Asseray N, Ansart S, Moal GL, Zimmerli W, Ariza J (2017) The not-so-good prognosis of streptococcal periprosthetic joint infection managed by implant retention: the results of a large multicenter study. Clin Infect Dis 64(12):1742–1752CrossRefGoogle Scholar
  22. 22.
    Tschudin-Sutter S, Frei R, Dangel M, Jakob M, Balmelli C, Schaefer DJ, Weisser M, Elzi L, Battegay M, Widmer AF (2016) Validation of a treatment algorithm for orthopaedic implant-related infections with device-retention-results from a prospective observational cohort study. Clin Microbiol Infect 22(5):20CrossRefGoogle Scholar
  23. 23.
    Kuiper JW, Willink RT, Moojen DJ, van den Bekerom MP, Colen S (2014) Treatment of acute periprosthetic infections with prosthesis retention: review of current concepts. World J Orthop 5(5):667–676CrossRefGoogle Scholar
  24. 24.
    Wang J, Calhoun JH, Mader JT (2002) The application of bioimplants in the management of chronic osteomyelitis. Orthopedics 25(11):1247–1252Google Scholar
  25. 25.
    Mader JT, Calhoun J, Cobos J (1997) In vitro evaluation of antibiotic diffusion from antibiotic-impregnated biodegradable beads and polymethylmethacrylate beads. Antimicrob Agents Chemother 41(2):415–418CrossRefGoogle Scholar
  26. 26.
    Armstrong DG, Findlow AH, Oyibo SO, Boulton AJ (2001) The use of absorbable antibiotic-impregnated calcium sulphate pellets in the management of diabetic foot infections. Diabet Med 18(11):942–943CrossRefGoogle Scholar
  27. 27.
    Klemm K (1979) Gentamicin-PMMA-beads in treating bone and soft tissue infections (author’s transl). Zentralbl Chir 104(14):934–942Google Scholar
  28. 28.
    Klemm K, Borner M (1986) Treatment of chronic osteomyelitis with gentamicin PMMA chains. Unfallchirurgie 12(3):128–131CrossRefGoogle Scholar
  29. 29.
    Adams K, Couch L, Cierny G, Calhoun J, Mader JT (1992) In vitro and in vivo evaluation of antibiotic diffusion from antibiotic-impregnated polymethylmethacrylate beads. Clin Orthop Relat Res 278:244–252Google Scholar
  30. 30.
    Blaha JD, Calhoun JH, Nelson CL, Henry SL, Seligson D, Esterhai JL Jr, Heppenstall RB, Mader J, Evans RP, Wilkins J et al (1993) Comparison of the clinical efficacy and tolerance of gentamicin PMMA beads on surgical wire versus combined and systemic therapy for osteomyelitis. Clin Orthop Relat Res 295:8–12Google Scholar
  31. 31.
    Walenkamp GH, Kleijn LL, de Leeuw M (1998) Osteomyelitis treated with gentamicin-PMMA beads: 100 patients followed for 1-12 years. Acta Orthop Scand 69(5):518–522CrossRefGoogle Scholar
  32. 32.
    Neut D, van de Belt H, Stokroos I, van Horn JR, van der Mei HC, Busscher HJ (2001) Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. J Antimicrob Chemother 47(6):885–891CrossRefGoogle Scholar
  33. 33.
    Heybeli N, Oktar FN, Ozyazgan S, Akkan G, Ozsoy S (2003) Low-cost antibiotic loaded systems for developing countries. Technol Health Care 11(3):207–216Google Scholar
  34. 34.
    Kelm J, Anagnostakos K, Regitz T, Schmitt E, Schneider G, Ahlhelm F (2004) MRSA-infections-treatment with intraoperatively produced gentamycin-vancomycin PMMA beads. Chirurg 75(10):988–995.  https://doi.org/10.1007/s00104-004-0847-3 CrossRefGoogle Scholar
  35. 35.
    Nelson CL, Griffin FM, Harrison BH, Cooper RE (1992) In vitro elution characteristics of commercially and noncommercially prepared antibiotic PMMA beads. Clin Orthop Relat Res 284:303–309Google Scholar
  36. 36.
    Walenkamp GH, Vree TB, van Rens TJ (1986) Gentamicin-PMMA beads. Pharmacokinetic and nephrotoxicological study. Clin Orthop Relat Res 205:171–183Google Scholar
  37. 37.
    DiCicco M, Duong T, Chu A, Jansen SA (2003) Tobramycin and gentamycin elution analysis between two in situ polymerizable orthopedic composites. J Biomed Mater Res B Appl Biomater 65(1):137–149.  https://doi.org/10.1002/jbm.b.10528 CrossRefGoogle Scholar
  38. 38.
    Ferguson JY, Dudareva M, Riley ND, Stubbs D, Atkins BL, McNally MA (2014) The use of a biodegradable antibiotic-loaded calcium sulphate carrier containing tobramycin for the treatment of chronic osteomyelitis: a series of 195 cases. Bone Joint J 96-B(6):829–836.  https://doi.org/10.1302/0301-620X.96B6.32756 CrossRefGoogle Scholar
  39. 39.
    Turner TM, Urban RM, Hall DJ, Chye PC, Segreti J, Gitelis S (2005) Local and systemic levels of tobramycin delivered from calcium sulfate bone graft substitute pellets. Clin Orthop Relat Res 437:97–104CrossRefGoogle Scholar
  40. 40.
    Chang W, Colangeli M, Colangeli S, Di Bella C, Gozzi E, Donati D (2007) Adult osteomyelitis: debridement versus debridement plus Osteoset T pellets. Acta Orthop Belg 73(2):238–243Google Scholar
  41. 41.
    Brehm P (2018) KAM TITAN arthrodesis. Brehm Germany. http://www.peter-brehm.de/en/produkte/knie/kam-titan/. Accessed 12.01.2018
  42. 42.
    Chaussade H, Uckay I, Vuagnat A, Druon J, Gras G, Rosset P, Lipsky BA, Bernard L (2017) Antibiotic therapy duration for prosthetic joint infections treated by debridement and implant retention (DAIR): similar long-term remission for 6 weeks as compared to 12 weeks. Int J Infect Dis 63:37–42CrossRefGoogle Scholar
  43. 43.
    Mousset B, Benoit M, Delloye C, Bouillet R, Guillard J (1997) Biodegradable implants for potential use in bone infection. Int Orthop 21:403–408Google Scholar
  44. 44.
    Waterman P, Melissa Barber M, Weintrob AC, Regina VanBrakle M, Howard R, Kozar MP, Andersen R, Wortmann G (2012) The elution of colistimethate sodium from polymethylmethacrylate and calcium phosphate cement beads. Am J Orthop (Belle Mead, NJ) 41(6):256–259Google Scholar
  45. 45.
    Gramlich Y, Walter G, Gils J, Hoffmann R (2017) Early results of adjuvant topical treatment of recurrent osteomyelitis with absorbable antibiotic carriers. Z Orthop Unfall 12(10):0042–112228Google Scholar
  46. 46.
    Fleiter N, Walter G, Bosebeck H, Vogt S, Buchner H, Hirschberger W, Hoffmann R (2014) Clinical use and safety of a novel gentamicin-releasing resorbable bone graft substitute in the treatment of osteomyelitis/osteitis. Bone Joint Res 3(7):223–229CrossRefGoogle Scholar
  47. 47.
    Kallala R, Haddad FS (2015) Hypercalcaemia following the use of antibiotic-eluting absorbable calcium sulphate beads in revision arthroplasty for infection. Bone Joint J 97-B(9):1237–1241.  https://doi.org/10.1302/0301-620X.97B9.34532 CrossRefGoogle Scholar
  48. 48.
    Wahl P, Livio F, Jacobi M, Gautier E, Buclin T (2011) Systemic exposure to tobramycin after local antibiotic treatment with calcium sulphate as carrier material. Arch Orthop Trauma Surg 131(5):657–662.  https://doi.org/10.1007/s00402-010-1192-2 CrossRefGoogle Scholar
  49. 49.
    Wright_Medical (Zugang am 28.12.2015) Osteoset® T medicated bone graft substitute technical monograph. Wright Medical Technology, Inc. http://www.ossano.com/Produkter/Bensubstitut/Osteoset/Osteoset.html
  50. 50.
    Gauland C (2011) Managing lower-extremity osteomyelitis locally with surgical debridement and synthetic calcium sulfate antibiotic tablets. Adv Skin Wound Care 24(11):515–523.  https://doi.org/10.1097/01.ASW.0000407647.12832.6c CrossRefGoogle Scholar
  51. 51.
    Marczak D, Synder M, Sibiński M, Okoń T, Kowalczewski J (2016) The use of calcium carbonate beads containing gentamicin in the second stage septic revision of total knee arthroplasty reduces reinfection rate. Knee 23(2):322–326.  https://doi.org/10.1016/j.knee.2015.12.001
  52. 52.
    Tsourvakas S (2012) Local antibiotic therapy in the treatment of bone and soft tissue infections. In: Selected Topics in Plastic Reconstructive Surgery. InTecGoogle Scholar
  53. 53.
    Strauss A (1999) Lokaler Antibiotikumtraeger aus Kalziumsulfat: Vertraeglichkeit im Gewebe und Pharmakokinetik der angewendeten Antibiotika nach Implantation in Kaninchen. KöhlerGoogle Scholar
  54. 54.
    Hereaus Medical GmbH Werheim Germany (2016) Technical Monograph Herafill. Hereaus Medical Germany. http://heraeus-medical.com/de/produkte_1/knochenersatz/herafill_1.aspx. Accessed 2016
  55. 55.
    Tice AD, Rehm SJ, Dalovisio JR, Bradley JS, Martinelli LP, Graham DR, Gainer RB, Kunkel MJ, Yancey RW, Williams DN (2004) Practice guidelines for outpatient parenteral antimicrobial therapy. Clin Infect Dis 38(12):1651–1671CrossRefGoogle Scholar
  56. 56.
    Humm G, Noor S, Bridgeman P, David M, Bose D (2014) Adjuvant treatment of chronic osteomyelitis of the tibia following exogenous trauma using OSTEOSET((R))-T: a review of 21 patients in a regional trauma centre. Strateg Trauma Limb Reconstr 9(3):157–161.  https://doi.org/10.1007/s11751-014-0206-y CrossRefGoogle Scholar
  57. 57.
    Di Benedetto P, Di Benedetto ED, Salviato D, Beltrame A, Gissoni R, Cainero V, Causero A (2017) Acute periprosthetic knee infection: is there still a role for DAIR? Acta Biomed 88(2 -S):84–91Google Scholar
  58. 58.
    de Vries L, van der Weegen W, Neve WC, Das H, Ridwan BU, Steens J (2016) The effectiveness of debridement, antibiotics and irrigation for periprosthetic joint infections after primary hip and knee arthroplasty. A 15 years retrospective study in two community hospitals in the Netherlands. J Bone Joint Infect 1:20–24CrossRefGoogle Scholar
  59. 59.
    Tsang SJ, Ting J, Simpson A, Gaston P (2017) Outcomes following debridement, antibiotics and implant retention in the management of periprosthetic infections of the hip: a review of cohort studies. Bone Joint J 99-B(11):1458–1466.  https://doi.org/10.1302/0301-620X.99B11.BJJ-2017-0088.R1 CrossRefGoogle Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  1. 1.Department of Trauma and Orthopedic SurgeryBerufsgenossenschaftliche Unfallklinik Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations