International Orthopaedics

, Volume 42, Issue 11, pp 2705–2713 | Cite as

Soft tissue micro-circulation in the healthy hindfoot: a cross-sectional study with focus on lateral surgical approaches to the calcaneus

  • John Bennet Carow
  • Juliane Carow
  • Boyko Gueorguiev
  • Kajetan Klos
  • Christian Herren
  • Miguel Pishnamaz
  • Christian David Weber
  • Sven Nebelung
  • Bong-Sung Kim
  • Matthias KnobeEmail author
Original Paper



Open reduction and internal fixation (ORIF) using an extended lateral approach combined with plate osteosynthesis represents the current gold standard in calcaneal fracture treatment, but it is associated with a wound complication rate of up to 30%. Literature suggests that micro-circulation is one of the key factors for sufficient wound healing. The aim of this study was to evaluate soft tissue micro-circulation of the hindfoot in healthy volunteers to determine influencing factors and to identify hypoxic or hypoperfused areas in non-trauma situations, with special attention to surgical approaches.


Micro-circulation of the lateral hindfoot of 125 participants was non-invasively measured at 2 and 8 mm depths, utilizing a Micro-Lightguide O2C® spectrophotometer. Blood flow (BF [AU]) and oxygen saturation (SO2 [%]) of ten measurement points (MPs) were documented. Demographic factors (age, gender, body mass index [BMI], systolic/diastolic blood pressure, smoking, and pack-years) and regional differences with special regard to surgical approaches (extended lateral approach, Palmer approach, Ollier approach, and a self-modified extended lateral approach) were analyzed.


The SO2 assessments at 2- and 8-mm depths revealed higher values in males (p = 0.043; p = 0.025). There was a correlation between higher age and lower 2 mm BF (p = 0.044). Smoking history and number of pack-years did not predict micro-circulation. BF at the 2 mm depth was highest in the regions of Palmer and Ollier approach (p < 0.001). The MP at the distal calcaneal tuberosity showed significantly higher values regarding all parameters (SO2 (2 mm), p < 0.001; SO2 (8 mm), p = 0.001; BF (2 mm), p < 0.001; BF (8 mm), p < 0.001), compared to the surrounding area.


In non-trauma situations, young males were associated with better micro-circulatory supply of the lateral hindfoot. There was a trend for higher blood flow in regions of the Palmer and Ollier approach. The distal calcaneal tuberosity was clearly superior in all micro-circulatory parameters when compared to the surrounding area.


O2C Micro-circulation Blood flow Soft tissue Hindfoot Calcaneus Surgical approach Wound complication 


Compliance with ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethics committee of the RWTH Aachen University Hospital, ethics approval EK 346/14.

Informed consent

Each author certifies that his or her institution approved the human protocol for this investigation, that all investigations were conducted in conformity with the ethical principles of research, and that informed consent for participation in the study was obtained.


EK 346/14

Supplementary material

264_2018_4031_MOESM1_ESM.xls (133 kb)
ESM 1 (XLS 133 kb)


  1. 1.
    Mitchell MJ, McKinley JC, Robinson CM (2009) The epidemiology of calcaneal fractures. Foot (Edinb) 19(4):197–200. CrossRefGoogle Scholar
  2. 2.
    Böhler L (1931) Diagnosis, pathology, and treatment of fractures of the os calcis. J Bone Joint Surg Am 13:75–89Google Scholar
  3. 3.
    Essex-Lopresti P (1952) The mechanism, reduction technique, and results in fractures of the os calcis. Br J Surg 39(157):395–419CrossRefGoogle Scholar
  4. 4.
    Palmer I (1948) The mechanism and treatment of fractures of the calcaneus. J Bone Joint Surg Am 30:2–8CrossRefGoogle Scholar
  5. 5.
    Sanders R, Fortin P, DiPasquale T, Walling A (1993) Operative treatment in 120 displaced intraarticular calcaneal fractures. Results using a prognostic computed tomography scan classification. Clin Orthop Relat Res (290):87–95Google Scholar
  6. 6.
    Zwipp H, Tscherne H, Wülker N, Grote R (1989) Intra-articular fracture of the calcaneus. Classification, assessment and surgical procedures. Unfallchirurgie 92(3):117–129Google Scholar
  7. 7.
    Dhillon MS, Bali K, Prabhakar S (2011) Controversies in calcaneus fracture management: a systematic review of the literature. Musculoskelet Surg 95(3):171–181. CrossRefPubMedGoogle Scholar
  8. 8.
    Buckley R, Tough S, McCormack R et al (2002) Operative compared with nonoperative treatment of displaced intra-articular calcaneal fractures: a prospective, randomized, controlled multicenter trial. J Bone Joint Surg Am 84-A(10):1733–1744CrossRefGoogle Scholar
  9. 9.
    Gougoulias N, Khanna A, McBride DJ, Maffulli N (2009) Management of calcaneal fractures: systematic review of randomized trials. Br Med Bull 92(1):153–167. CrossRefPubMedGoogle Scholar
  10. 10.
    DeWall M (2010) Percutaneous reduction and fixation of displaced intra-articular calcaneus fractures. J Orthop Trauma 24(8):466–472. CrossRefPubMedGoogle Scholar
  11. 11.
    Rammelt S, Zwipp H (2014) Fractures of the calcaneus: current treatment strategies. Acta Chir Orthop Traumatol Cechoslov 81(3):177–196Google Scholar
  12. 12.
    Pastor T, Gradl G, Klos K et al (2016) Displaced intra-articular calcaneal fractures: is there a consensus on treatment in Germany? Int Orthop 40(10):2181–2190. CrossRefPubMedGoogle Scholar
  13. 13.
    Benirschke SK, Kramer PA (2004) Wound healing complications in closed and open calcaneal fractures. J Orthop Trauma 18(1):1–6CrossRefGoogle Scholar
  14. 14.
    Court-Brown CM, Charles M, Schmidt M, Schutte BG (2009) Factors affecting infection after calcaneal fracture fixation. Injury 40(12):1313–1315. CrossRefPubMedGoogle Scholar
  15. 15.
    Folk JW, Starr AJ, Early JS (1999) Early wound complications of operative treatment of calcaneus fractures: analysis of 190 fractures. J Orthop Trauma 13(5):369–372CrossRefGoogle Scholar
  16. 16.
    Harvey EJ, Grujic L, Early JS et al (2001) Morbidity associated with ORIF of intra-articular calcaneus fractures using a lateral approach. Foot Ankle Int 22(11):868–873CrossRefGoogle Scholar
  17. 17.
    Howard JL, Buckley R, McCormack R et al (2003) Complications following management of displaced intra-articular calcaneal fractures: a prospective randomized trial comparing open reduction internal fixation with nonoperative management. J Orthop Trauma 17(4):241–249CrossRefGoogle Scholar
  18. 18.
    Poeze M, Verbruggen JP, Brink PR (2008) The relationship between the outcome of operatively treated calcaneal fractures and institutional fracture load: a systematic review of the literature. J Bone Joint Surg Am 90(5):1013–1021. CrossRefPubMedGoogle Scholar
  19. 19.
    Palmer I (1948) The mechanism and treatment of fractures of the calcaneus: open reduction with the use of cancellous grafts. J Bone Joint Surg Am 30(1):2–8CrossRefGoogle Scholar
  20. 20.
    Letournel E (1993) Open treatment of acute calcaneal fractures. Clin Orthop Relat Res (290):60–67Google Scholar
  21. 21.
    Zwipp H, Tscherne H, Thermann H, Weber T (1993) Osteosynthesis of displaced intraarticular fractures of the calcaneus results in 123 cases. Clin Orthop Relat Res 290:76–86Google Scholar
  22. 22.
    Schepers T, Kieboom BC, Bessems GH et al (2010) Subtalar versus triple arthrodesis after intra-articular calcaneal fractures. Strategies Trauma Limb Reconstr 5(2):97–103. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Burdeaux BD (1983) Reduction of calcaneal fractures by the McReynolds medial approach technique and its experimental basis. Clin Orthop Relat Res 177:87–103Google Scholar
  24. 24.
    Gupta A, Ghalambor N, Nihal A, Trepman E (2003) The modified palmer lateral approach for calcaneal fractures: wound healing and postoperative computed tomographic evaluation of fracture reduction. Foot Ankle Int 24(10):744–753CrossRefGoogle Scholar
  25. 25.
    Abidi NA, Dhawan S, Gruen GS et al (1998) Wound-healing risk factors after open reduction and internal fixation of calcaneal fractures. Foot Ankle Int 19(12):856–861CrossRefGoogle Scholar
  26. 26.
    Koski A, Kuokkanen H, Tukiainen E (2005) Postoperative wound complications after internal fixation of closed calcaneal fractures: a retrospective analysis of 126 consecutive patients with 148 fractures. Scand J Surg 94(3):243–245CrossRefGoogle Scholar
  27. 27.
    Rammelt S, Barthel S, Biewener A et al (2003) Calcaneus fractures. Open reduction and internal fixation. Zentralbl Chir 128(6):517–528. CrossRefPubMedGoogle Scholar
  28. 28.
    Harrison DK (2003) Optical measurements of tissue oxygen saturation in lower limb wound healing. In: Thorniley M, Harrison DK, James PE (eds) Oxygen transport to tissue XXV. Adv Exp Med Biol 540:265–269. Google Scholar
  29. 29.
    Ambrózy E, Waczuliková I, Willfort A et al (2013) Healing process of venous ulcers: the role of microcirculation. Int Wound J 10(1):57–64. CrossRefPubMedGoogle Scholar
  30. 30.
    Zwipp H, Rammelt S, Barthel S (2004) Calcaneal fractures—open reduction and internal fixation (ORIF). Injury 35((2):46–54. CrossRefGoogle Scholar
  31. 31.
    Kösters AK, Ganse B, Gueorguiev B et al (2017) Effects of low-intensity pulsed ultrasound on soft tissue micro-circulation in the foot. Int Orthop 22:1–8. CrossRefGoogle Scholar
  32. 32.
    de Smet GHJ, Kroese LF, Menon AG et al (2017) Oxygen therapies and their effects on wound healing. Wound Repair Regen. CrossRefGoogle Scholar
  33. 33.
    Beckert S, Witte MB, Königsrainer A, Coerper S (2004) The impact of the micro-lightguide O2C for the quantification of tissue ischemia in diabetic foot ulcers. Diabetes Care 27(12):2863–2867CrossRefGoogle Scholar
  34. 34.
    Forst T, Hohberg C, Tarakci E et al (2008) Reliability of lightguide spectrophotometry (O2C®) for the investigation of skin tissue microvascular blood flow and tissue oxygen supply in diabetic and nondiabetic subjects. J Diabetes Sci Technol 2(6):1151–1156CrossRefGoogle Scholar
  35. 35.
    Harrison DK, McCollum PT, Newton DJ et al (1995) Amputation level assessment using lightguide spectrophotometry. Prosthetics Orthot Int 19(3):139–147Google Scholar
  36. 36.
    Jørgensen LP, Schroeder TV (2012) Micro-lightguide spectrophotometry for tissue perfusion in ischemic limbs. J Vasc Surg 56(3):746–752. CrossRefPubMedGoogle Scholar
  37. 37.
    Merz KM, Pfau M, Blumenstock G et al (2010) Cutaneous microcirculatory assessment of the burn wound is associated with depth of injury and predicts healing time. Burns 36(4):477–482. CrossRefPubMedGoogle Scholar
  38. 38.
    Mücke T, Rau A, Merezas A et al (2014) Identification of perioperative risk factor by laser-doppler spectroscopy after free flap perfusion in the head and neck: a prospective clinical study. Microsurgery 34(5):345–351. CrossRefPubMedGoogle Scholar
  39. 39.
    Gardner AW, Montgomery PS, Blevins SM et al (2010) Gender and ethnic differences in arterial compliance in patients with intermittent claudication. J Vasc Surg 51(3):610–615. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kao WL, Sun CW (2015) Gender-related effect in oxygenation dynamics by using far-infrared intervention with near-infrared spectroscopy measurement: a gender differences controlled trial. PLoS One 10(11):e0135166. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Forstmeier V, Sorg H, Kabbani M et al (2015) Evaluation of cutaneous microcirculation at the dorsum of the hand within different age groups—implications for wound healing in hand surgery? Handchir Mikrochir Plast Chir 47(6):384–388. CrossRefPubMedGoogle Scholar
  42. 42.
    Park DH, Hwang JW, Jang KS et al (1997) Mapping of the human body skin with laser Doppler flowmetry. Ann Plast Surg 39(6):597–602CrossRefGoogle Scholar
  43. 43.
    Bentov I, Reed MJ (2015) The effect of aging on the cutaneous microvasculature. Microvasc Res 100:25–31. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Klos K, Simons P, Mückley T et al (2017) Fractures of the ankle joint in elderly patients. Unfallchirurgie. CrossRefGoogle Scholar
  45. 45.
    Karich B, Klos K, Simons P et al (2017) Minimally invasive osteosynthesis after ankle fractures in geriatric patients : surgical technique with the aid of headless full thread screws. Unfallchirurgie. CrossRefGoogle Scholar
  46. 46.
    Sørensen LT (2012) Wound healing and infection in surgery: the clinical impact of smoking and smoking cessation: a systematic review and meta-analysis. Arch Surg 147(4):373–383. CrossRefPubMedGoogle Scholar
  47. 47.
    Zhang W, Chen E, Xue D et al (2015) Risk factors for wound complications of closed calcaneal fractures after surgery: a systematic review and meta-analysis. Scand J Trauma Resusc Emerg Med 23(1):18. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Woo S, Bae S, Chung HJ et al (2017) Radiologic and clinical outcomes of Ollier approach with screw fixation for displaced intra-articular calcaneal fractures—comparative study with extensile lateral approach with lateral plating. Foot & Ankle Orthopaedics 2(3):2473011417S0004. CrossRefGoogle Scholar
  49. 49.
    Freeman BJ, Duff S, Allen PE et al (1998) The extended lateral approach to the hindfoot. Anatomical basis and surgical implications. J Bone Joint Surg Br 80(1):139–142CrossRefGoogle Scholar
  50. 50.
    Bibbo C, Ehrlich DA, Nguyen HM et al (2014) Low wound complication rates for the lateral extensile approach for calcaneal ORIF when the lateral calcaneal artery is patent. Foot Ankle Int 35(7):650–656. CrossRefPubMedGoogle Scholar
  51. 51.
    Borrelli J Jr, Lashgari C (1999) Vascularity of the lateral calcaneal flap: a cadaveric injection study. J Orthop Trauma 13(2):73–77CrossRefGoogle Scholar
  52. 52.
    Ganse B, Pishnamaz M, Kobbe P et al (2017) Microcirculation in open vs. minimally invasive dorsal stabilization of thoracolumbar fractures. PLoS One 12(11):e0188115. eCollection 2017CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  • John Bennet Carow
    • 1
  • Juliane Carow
    • 1
  • Boyko Gueorguiev
    • 2
  • Kajetan Klos
    • 3
  • Christian Herren
    • 1
  • Miguel Pishnamaz
    • 1
  • Christian David Weber
    • 1
  • Sven Nebelung
    • 4
  • Bong-Sung Kim
    • 5
  • Matthias Knobe
    • 1
    Email author
  1. 1.Department of Orthopaedic TraumaUniversity of Aachen Medical CenterAachenGermany
  2. 2.AO Research Institute DavosDavosSwitzerland
  3. 3.Department of Foot and Ankle SurgeryCatholic Hospital MainzMainzGermany
  4. 4.Department of RadiologyUniversity of Aachen Medical CenterAachenGermany
  5. 5.Department of Plastic Surgery, Reconstructive and Hand SurgeryUniversity of Aachen Medical CenterAachenGermany

Personalised recommendations