Advertisement

International Orthopaedics

, Volume 43, Issue 3, pp 553–559 | Cite as

Clinical and radiographical ten years long-term outcome of microfracture vs. autologous chondrocyte implantation: a matched-pair analysis

  • Robert OssendorffEmail author
  • Kilian Franke
  • Benjamin Erdle
  • Markus Uhl
  • Norbert P. Südkamp
  • Gian M. Salzmann
Original Paper

Abstract

Purpose

To compare the clinical and radiographical long-term outcome of microfracture (MFX) and first-generation periosteum-covered autologous chondrocyte implantation (ACI-P).

Methods

All subjects (n = 86) who had been treated with knee joint ACI-P or microfracture (n = 76) with a post-operative follow-up of at least ten years were selected. Clinical pre- and post-operative outcomes were analyzed by numeric analog scale (NAS) for pain, Lysholm, Tegner, IKDC, and KOOS score. Radiographical evaluation was visualized by magnetic resonance imaging (MRI). Assessment of the regenerate quality was performed by the magnetic resonance observation of cartilage repair tissue (MOCART) and modified knee osteoarthritis scoring system (mKOSS). Relaxation time (RT) of T2 maps enabled a microstructural cartilage analysis.

Results

MFX and ACI of 44 patients (24 females, 20 males; mean age 38.9 ± 12.1 years) resulted in a good long-term outcome with low pain scores and significant improved clinical scores. The final Lysholm and functional NAS scores were significantly higher in the MFX group (Lysholm: MFX 82 ± 15 vs. ACI-P 71 ± 18 p = 0.027; NAS function: MFX 8.1 ± 3.5 vs. ACI-P 6.0 ± 2.5; p = 0.003). The MOCART score did not show any qualitative differences. KOSS analysis demonstrated that cartilage repair of small defects resulted in a significant better outcome. T2-relaxation times were without difference between groups at the region of the regenerate tissue.

Conclusion

This study did not demonstrate coherent statistical differences between both cartilage repair procedures. MFX might be superior in the treatment of small cartilage defects.

Keywords

Microfracture Periosteum-covered autologous chondrocyte implantation Knee osteoarthritis scoring system Magnetic resonance observation of cartilage repair tissue 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the local ethical committee (EK262-13).

References

  1. 1.
    Widuchowski W, Widuchowski J, Trzaska T (2007) Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 14(3):177–182.  https://doi.org/10.1016/j.knee.2007.02.001 CrossRefGoogle Scholar
  2. 2.
    Buckwalter JA, Mankin HJ, Grodzinsky AJ (2005) Articular cartilage and osteoarthritis. Instr Course Lect 54:465–480Google Scholar
  3. 3.
    Niemeyer P, Feucht MJ, Fritz J et al (2016) Cartilage repair surgery for full-thickness defects of the knee in Germany: indications and epidemiological data from the German Cartilage Registry (KnorpelRegister DGOU). Arch Orthop Trauma Surg 136(7):891–897.  https://doi.org/10.1007/s00402-016-2453-5 CrossRefGoogle Scholar
  4. 4.
    Devitt BM, Bell SW, Webster KE et al (2017) Surgical treatments of cartilage defects of the knee: systematic review of randomised controlled trials. Knee 24(3):508–517.  https://doi.org/10.1016/j.knee.2016.12.002 CrossRefGoogle Scholar
  5. 5.
    Riboh JC, Cvetanovich GL, Cole BJ et al (2016) Comparative efficacy of cartilage repair procedures in the knee: a network meta-analysis. Knee Surg Sports Traumatol Arthrosc.  https://doi.org/10.1007/s00167-016-4300-1
  6. 6.
    Brun P, Dickinson SC, Zavan B et al (2008) Characteristics of repair tissue in second-look and third-look biopsies from patients treated with engineered cartilage: relationship to symptomatology and time after implantation. Arthritis Res Ther 10(6):R132.  https://doi.org/10.1186/ar2549 CrossRefGoogle Scholar
  7. 7.
    Trattnig S, Domayer S, Welsch GW et al (2009) MR imaging of cartilage and its repair in the knee—a review. Eur Radiol 19(7):1582–1594.  https://doi.org/10.1007/s00330-009-1352-3 CrossRefGoogle Scholar
  8. 8.
    Baum T, Joseph GB, Karampinos DC et al (2013) Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthr Cartil 21(10):1474–1484.  https://doi.org/10.1016/j.joca.2013.07.012 CrossRefGoogle Scholar
  9. 9.
    Salzmann GM, Erdle B, Porichis S et al (2014) Long-term T2 and qualitative MRI morphology after first-generation knee autologous chondrocyte implantation: cartilage ultrastructure is not correlated to clinical or qualitative MRI outcome. Am J Sports Med 42(8):1832–1840.  https://doi.org/10.1177/0363546514536682 CrossRefGoogle Scholar
  10. 10.
    Salzmann GM, Paul J, Bauer JS et al (2009) T2 assessment and clinical outcome following autologous matrix-assisted chondrocyte and osteochondral autograft transplantation. Osteoarthr Cartil 17(12):1576–1582.  https://doi.org/10.1016/j.joca.2009.07.010 CrossRefGoogle Scholar
  11. 11.
    Marlovits S, Singer P, Zeller P et al (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57(1):16–23.  https://doi.org/10.1016/j.ejrad.2005.08.007 CrossRefGoogle Scholar
  12. 12.
    Niemeyer P, Albrecht D, Andereya S et al (2016) Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU). Knee 23(3):426–435.  https://doi.org/10.1016/j.knee.2016.02.001 CrossRefGoogle Scholar
  13. 13.
    Gobbi A, Karnatzikos G, Kumar A (2014) Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc 22(9):1986–1996.  https://doi.org/10.1007/s00167-013-2676-8 CrossRefGoogle Scholar
  14. 14.
    Mithoefer K, McAdams T, Williams RJ et al (2009) Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med 37(10):2053–2063.  https://doi.org/10.1177/0363546508328414 CrossRefGoogle Scholar
  15. 15.
    Knutsen G, Drogset JO, Engebretsen L et al (2016) A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years. J Bone Joint Surg Am 98(16):1332–1339.  https://doi.org/10.2106/JBJS.15.01208 CrossRefGoogle Scholar
  16. 16.
    DiBartola AC, Everhart JS, Magnussen RA et al (2016) Correlation between histological outcome and surgical cartilage repair technique in the knee: a meta-analysis. Knee 23(3):344–349.  https://doi.org/10.1016/j.knee.2016.01.017 CrossRefGoogle Scholar
  17. 17.
    Rehnitz C, Weber M-A (2015) Morphologische und funktionelle Knorpeldiagnostik (morphological and functional cartilage imaging). Orthopade 44(4):317–333; quiz 334-5.  https://doi.org/10.1007/s00132-015-3110-3 CrossRefGoogle Scholar
  18. 18.
    Kijowski R, Blankenbaker DG, Munoz Del Rio A et al (2013) Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 267(2):503–513.  https://doi.org/10.1148/radiol.12121413 CrossRefGoogle Scholar
  19. 19.
    Jungmann PM, Baum T, Bauer JS et al (2014) Cartilage repair surgery: outcome evaluation by using noninvasive cartilage biomarkers based on quantitative MRI techniques? Biomed Res Int 2014:840170.  https://doi.org/10.1155/2014/840170 CrossRefGoogle Scholar
  20. 20.
    David-Vaudey E, Ghosh S, Ries M et al (2004) T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging 22(5):673–682.  https://doi.org/10.1016/j.mri.2004.01.071 CrossRefGoogle Scholar
  21. 21.
    Nieminen MT, Nissi MJ, Mattila L et al (2012) Evaluation of chondral repair using quantitative MRI. J Magn Reson Imaging 36(6):1287–1299.  https://doi.org/10.1002/jmri.23644 CrossRefGoogle Scholar
  22. 22.
    Erdle B, Herrmann S, Porichis S et al (2017) Sporting activity is reduced 11 years after first-generation autologous chondrocyte implantation in the knee joint. Am J Sports Med 45(12):2762–2773.  https://doi.org/10.1177/0363546517716920 CrossRefGoogle Scholar
  23. 23.
    Marlovits S, Striessnig G, Resinger CT et al (2004) Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 52(3):310–319.  https://doi.org/10.1016/j.ejrad.2004.03.014 CrossRefGoogle Scholar
  24. 24.
    Gudas R, Gudaite A, Pocius A et al (2012) Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am J Sports Med 40(11):2499–2508.  https://doi.org/10.1177/0363546512458763 CrossRefGoogle Scholar
  25. 25.
    Niemeyer P, Andereya S, Angele P et al (2013) Stellenwert der autologen Chondrozytentransplantation (ACT) in der Behandlung von Knorpelschäden des Kniegelenks - Empfehlungen der AG Klinische Geweberegeneration der DGOU (Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Tissue Regeneration” of the German Society of Orthopaedic Surgery and Traumatology (DGOU)). Z Orthop Unfall 151(1):38–47.  https://doi.org/10.1055/s-0032-1328207 Google Scholar
  26. 26.
    Ossendorff R, Grad S, Stoddart MJ et al (2017) Autologous chondrocyte implantation in osteoarthritic surroundings: TNFα and its inhibition by adalimumab in a knee-specific bioreactor. Am J Sports Med.  https://doi.org/10.1177/0363546517737497

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  1. 1.Department of Orthopaedics and Trauma Surgery, University Medical CenterAlbert-Ludwigs University FreiburgFreiburgGermany
  2. 2.Department of Orthopaedics and Trauma Surgery, University Medical CenterFriedrich-Wilhelms University BonnBonnGermany
  3. 3.RKK Klinikum - St. JosefskrankenhausFreiburgGermany
  4. 4.Schulthess ClinicZürichSwitzerland
  5. 5.Gelenkzentrum Rhein-MainWiesbadenGermany

Personalised recommendations