International Orthopaedics

, Volume 43, Issue 3, pp 697–703 | Cite as

Clinical application of a minimally invasive cement-augmentable Schanz screw rod system to treat pelvic ring fractures

  • Paul SchmitzEmail author
  • Florian Baumann
  • Yves P. Acklin
  • Boyko Gueorguiev
  • Michael Nerlich
  • Stephan Grechenig
  • Michael Bernd Müller
Original Paper



The purpose of this study is to analyze the results using the USS fracture MIS system (DePuy Synthes) to treat instable pelvic ring fractures. As its outstanding feature, it is the only Schanz screw and rod system at present that combines angular stability, perforation/fenestration of the screws for cement-augmentation, a variable screw length, and a large screw diameter.

Materials and methods

Retrospective investigation of 134 pelvic ring fractures treated in 2012–2013. Twenty-five patients obtained the abovementioned implant. Besides baseline characteristics of the included patients and the surgical procedure, a clinical/radiological follow-up of six months was analyzed.


Dividing the collective into two groups, I high-energy trauma and II fragility fracture of the pelvis, the following results were recorded: group I: ten patients, six male, age 48.4 ± 19.7 years. Mean ISS 41 ± 22.5, fracture classification: AO/OTA type 61 B1/C1/C3 = 1/5/4. Operative treatment: three transiliac internal fixator, seven iliolumbar fixation, one implant was cement-augmented. Group II: 15 patients, 14 female, age 77.5 ± 10.1 years. Fracture classification according to Rommens: FFPII/III/IV = 6/1/8. Operative treatment: eight transiliac internal fixator, seven iliolumbar fixation, 14 implants were cement-augmented. Overall surgical side complications: 16%. Radiological examination: correct positioning of all ilium screws. Follow-up after six month (16 patients): all showed fracture consolidation. One ilium screw was broken close to the connecting clamp.


The investigated Schanz screw rod system is a suitable implant to broaden the established procedures to stabilize dorsal pelvic ring fractures.

Trial registration

The study is registered at the Clinical Trial Registry University of Regensburg (Number Z-2017-0878-3).


Fracture Pelvis Internal fixation Cement augmentation TIFI Schanz screw 


Compliance with ethical standards

In accordance with the 1964 Helsinki Declaration, the local institutional review board approved the study (IRB-Number 15-101-0092).


  1. 1.
    Nork SE, Jones CB, Harding SP, Mirza SK, Routt ML Jr (2001) Percutaneous stabilization of U-shaped sacral fractures using iliosacral screws: technique and early results. J Orthop Trauma 15(4):238–246CrossRefGoogle Scholar
  2. 2.
    van Zwienen CMA, van den Bosch EW, Snijders CJ, Kleinrensink GJ, van Vugt AB (2004) Biomechanical comparison of sacroiliac screw techniques for unstable pelvic ring fractures. J Orthop Trauma 18(9):589–595CrossRefGoogle Scholar
  3. 3.
    Gardner MJ, Morshed S, Nork SE, Ricci WM, Chip Routt ML Jr (2010) Quantification of the upper and second sacral segment safe zones in normal and dysmorphic sacra. J Orthop Trauma 24(10):622–629. CrossRefGoogle Scholar
  4. 4.
    Tjardes T, Paffrath T, Baethis H, Shafizadeh S, Steinhausen E, Steinbuechel T, Rixen D, Bouillon B (2008) Computer assisted percutaneous placement of augmented iliosacral screws: a reasonable alternative to sacroplasty. Spine 33(13):1497–1500CrossRefGoogle Scholar
  5. 5.
    Gardner MJ, Routt ML Jr (2011) Transiliac-transsacral screws for posterior pelvic stabilization. J Orthop Trauma 25(6):378–384. CrossRefGoogle Scholar
  6. 6.
    Blum L, Hake ME, Charles R, Conlan T, Rojas D, Martin MT, Mauffrey C (2018) Vertical shear pelvic injury: evaluation, management, and fixation strategies. Int Orthop.
  7. 7.
    Vanderschot P, Kuppers M, Sermon A, Lateur L (2009) Trans-iliac-sacral-iliac-bar procedure to treat insufficiency fractures of the sacrum. Indian J Orthop 43(3):245–252. CrossRefGoogle Scholar
  8. 8.
    Mehling I, Hessmann MH, Rommens PM (2012) Stabilization of fatigue fractures of the dorsal pelvis with a trans-sacral bar. Operative technique and outcome. Injury 43(4):446–451. CrossRefGoogle Scholar
  9. 9.
    Suzuki T, Hak DJ, Ziran BH, Adams SA, Stahel PF, Morgan SJ, Smith WR (2009) Outcome and complications of posterior transiliac plating for vertically unstable sacral fractures. Injury 40(4):405–409. CrossRefGoogle Scholar
  10. 10.
    Rommens PM, Wagner D, Hofmann A (2012) Surgical management of osteoporotic pelvic fractures: a new challenge. Eur J Trauma Emerg Surg 38:499–509. CrossRefGoogle Scholar
  11. 11.
    Füchtmeier B, Maghsudi M, Neumann ·C, Hente ·R, Roll ·C, Nerlich ·M (2004) The minimally invasive stabilization of the dorsal pelvic ring with the transiliacal internal fixator (TIFI)—surgical technique and first clinical findings. Unfallchirurgie 107(12):1142–1151CrossRefGoogle Scholar
  12. 12.
    Schildhauer TA, McCulloch P, Chapman JR, Mann FA. Anatomic and radiographic considerations for placement of transiliac screws in lumbopelvic fixation. J Spinal Disord Tech 15(3)199–205Google Scholar
  13. 13.
    Schmitz P, Baumann F, Grechenig S, Gaensslen A, Nerlich M, Müller MB (2015) The cement-augmented transiliacal internal fixator (caTIFI): an innovative surgical technique for stabilization of fragility fractures of the pelvis. Injury;46 Suppl 4:S114–SS20. doi:
  14. 14.
    Acharya NK, Bijukachhe B, Kumar RJ, Menon VK (2008) Ilio-lumbar fixation—the Amrita technique. J Spinal Disord Tech 21(7):493–499. CrossRefGoogle Scholar
  15. 15.
    Keel MJ, Benneker LM, Siebenrock KA, Bastian JD (2011) Less invasive lumbopelvic stabilization of posterior pelvic ring instability: technique and preliminary results. J Trauma 71(3):E62–E70. Google Scholar
  16. 16.
    Schildhauer TA, Ledoux WR, Chapman JR, Henley MB, Tencer AF, Chip Routt ML Jr (2003) Triangular osteosynthesis and iliosacral screw fixation for unstable sacral fractures: a cadaveric and biomechanical evaluation under cyclic loads. J Orthop Trauma 17(1):22–31CrossRefGoogle Scholar
  17. 17.
    Schildbauer TA, Josten C, Muhr G (1998) Triangular osteosynthesis of vertically unstable sacrum fractures: a new concept allowing early weight-bearing. J Orthop Trauma 12(5):307–314CrossRefGoogle Scholar
  18. 18.
    Mouhsine E, Wettstein M, Schizas C, Borens O, Blanc CH, Leyvraz PF, Theumann N, Garofalo R (2006) Modified triangular posterior osteosynthesis of unstable sacrum fracture. Eur Spine J 15(6):857–863CrossRefGoogle Scholar
  19. 19.
    Tosounidis G, Holstein JH, Culemann U, Holmenschlager F, Stuby F, Pohlemann T (2010) Changes in epidemiology and treatment of pelvic ring fractures in Germany: an analysis on data of German Pelvic Multicenter Study Groups I and III (DGU/AO). Acta Chir Orthop Traumatol Cechoslov 77(6):450–456Google Scholar
  20. 20.
    Morris RO, Sonibare A, Green DJ, Masud T (2000) Closed pelvic fractures: characteristics and outcomes in older patients admitted to medical and geriatric wards. Postgrad Med J 76(900):646–650CrossRefGoogle Scholar
  21. 21.
    Rommens PM, Hofmann A (2013) Comprehensive classification of fragility fractures of the pelvic ring: recommendations for surgical treatment. Injury 44(12):1733–1744CrossRefGoogle Scholar
  22. 22.
    Futamura K, Baba T, Mogami A, Kanda A, Obayashi O, Iwase H, Kaneko K (2018) “Within ring”-based sacroiliac rod fixation may overcome the weakness of spinopelvic fixation for unstable pelvic ring injuries: technical notes and clinical outcomes. Int Orthop.
  23. 23.
    Orthopaedic Trauma Association Committee for Coding and Classification (1996) Fracture and dislocation compendium. J Orthop Trauma 10(Suppl 1):v–ix 1–154Google Scholar
  24. 24.
    Matta JM, Tornetta P 3rd (1996) Internal fixation of unstable pelvic ring injuries. Clin Orthop Relat Res 329:129–140CrossRefGoogle Scholar
  25. 25.
    Cheng M, Lee KY, Chang AL, Ho HF, Chan LS, Lee KB, Kwok PH, Lee AW, Wong KK, Kam CW, Leung GK, Wong JS, Cheung NK, Yeung JH, Tang N, Choi SH, Lau TW, Wong HT, Leung M (2018) Three-in-one protocol reduces mortality of patients with haemodynamically unstable pelvic fractures—a five year multi-centred review in Hong Kong. Int Orthop.
  26. 26.
    Tepic S, Remiger AR, Morikawa K, Predieri M, Perren SM (1997) Strength recovery in fractured sheep tibia treated with a plate or an internal fixator: an experimental study with a two-year follow-up. J Orthop Trauma 11(1):14–23CrossRefGoogle Scholar
  27. 27.
    Hofmann-Fliri L, Nicolino TI, Barla J, Gueorguiev B, Richards RG, Blauth M, Windolf M (2015) Cement augmentation of implants--no general cure in osteoporotic fracture treatment. A biomechanical study on non-displaced femoral neck fractures. J Orthop Res 34(2):314–319. CrossRefGoogle Scholar
  28. 28.
    Grechenig S, Gänsslen A, Gueorguiev B, Berner A, Müller M, Nerlich M, Schmitz P (2015) PMMA-augmented SI screw: a biomechanical analysis of stiffness and pull-out force in a matched paired human cadaveric model. Injury 46(Suppl 4):S125–S128. CrossRefGoogle Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  1. 1.Clinic of TraumatologyUniversity Medical Center RegensburgRegensburgGermany
  2. 2.AO Research Institute DavosDavosSwitzerland
  3. 3.Klinik für Unfall- und Wiederherstellungschirurgie, Klinikum BayreuthBayreuthGermany

Personalised recommendations