International Orthopaedics

, Volume 42, Issue 11, pp 2573–2581 | Cite as

In vivo kinematics of gait in posterior-stabilized and bicruciate-stabilized total knee arthroplasties using image-matching techniques

  • Koji Murakami
  • Satoshi HamaiEmail author
  • Ken Okazaki
  • Yifeng Wang
  • Satoru Ikebe
  • Hidehiko Higaki
  • Takeshi Shimoto
  • Hideki Mizu-uchi
  • Yukio Akasaki
  • Yasuharu Nakashima
Original Paper



This study aimed to evaluate the effects of two types of total knee arthroplasty (TKA) designs: posterior-stabilized (PS) and bicruciate-stabilized (BCS) on in vivo kinematics during gait.


Continuous X-ray images of the gait were taken using a flat panel detector for 23 PS and BCS TKAs. We analyzed the tibiofemoral implant flexion angle, anteroposterior (AP) translation, axial rotation, and anterior/posterior cam-post contact using image-matching techniques.


Double knee actions were demonstrated for the PS and BCS design (35 and 61%, respectively, p = 0.08). The tibiofemoral AP positions were significantly more posterior at peak extension (− 1.7 ± 2.2 and 1.0 ± 2.5 mm, respectively, p < 0.01) and anterior at peak flexion (1.3 ± 2.3 and − 0.8 ± 2.8 mm, respectively, p = 0.01) for the PS design than for the BCS design, with a significant difference in AP translation (3.0 ± 3.9 mm anterior and 1.7 ± 2.8 mm posterior, respectively, p < 0.01). Anterior/posterior tibial post contacts were found in 83/4% and 74/30% for the PS and BCS designs, respectively, with a significant difference in posterior contact (p = 0.72/0.04, respectively).


The knee flexion pattern, tibiofemoral AP translation, axial rotation, and cam-post contact during gait varied, depending on the type of implant, the PS and BCS designs.


Total knee arthroplasty Posterior-stabilized design Bicruciate-stabilized design Gait Image-matching technique Kinematics 



This work was supported by a grant from the Kaibara Morikazu Medical Science Promotion Foundation. The authors thank Junji Kishimoto, a statistician from the Digital Medicine Initiative at Kyushu University, for his valuable comments and suggestions regarding the statistical analyses.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study protocol was approved by Institutional Review Board of Kyushu University (IRB number 24-166). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Scott CEH, Howie CR, MacDonald D, Biant LC (2010) Predicting dissatisfaction following total knee replacement: a prospective study of 1217 patients. J Bone Joint Surg Br 92:1253–1258. CrossRefPubMedGoogle Scholar
  2. 2.
    Weiss JM, Noble PC, Conditt MA, Kohl HW (2002) What functional activities are important to patients with knee replacements? Clin Orthop Relat Res 404:172–188. CrossRefGoogle Scholar
  3. 3.
    Collins M, Lavigne M, Girard J, Vendittoli PA (2012) Joint perception after hip or knee replacement surgery. Orthop Traumatol Surg Res 98:275–280. CrossRefPubMedGoogle Scholar
  4. 4.
    Nilsdotter AK, Toksvig-Larsen S, Roos EM (2009) Knee arthroplasty: are patients’ expectations fulfilled? A prospective study of pain and function in 102 patients with 5-year follow-up. Acta Orthop 80:55–61. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Meneghini RM, Deckard ER, Ishmael MK, Ziemba-Davis M (2017) A dual-pivot pattern simulating native knee kinematics optimizes functional outcomes after total knee arthroplasty. J Arthroplast 32:3009–3015. CrossRefGoogle Scholar
  6. 6.
    Andriacchi TP, Galante JO, Fermier RW (1982) The influence of total knee-replacement design on walking and stair-climbing. J Bone Joint Surg Am 64:1328–1335. CrossRefPubMedGoogle Scholar
  7. 7.
    Stiehl JB, Dennis DA, Komistek RD, Crane HS (1999) In vivo determination of condylar lift-off and screw-home in a mobile-bearing total knee arthroplasty. J Arthroplast 14:293–299CrossRefGoogle Scholar
  8. 8.
    Banks SA, Harman MK, Bellemans J, Hodge WA (2003) Making sense of knee arthroplasty kinematics: news you can use. J Bone Joint Surg Am 85A:64–72. CrossRefGoogle Scholar
  9. 9.
    Hamai S, Miura H, Higaki H, Shimoto T, Matsuda S, Iwamoto Y (2008) Evaluation of impingement of the anterior tibial post during gait in a posteriorly-stabilised total knee replacement. J Bone Joint Surg Br 90:1180–1185. CrossRefPubMedGoogle Scholar
  10. 10.
    Li GA, Papannagari R, Most E, Park SE, Johnson T, Tanamal L et al (2005) Anterior tibial post impingement in a posterior stabilized total knee arthroplasty. J Orthop Res 23:536–541. CrossRefPubMedGoogle Scholar
  11. 11.
    Hanson GR, Suggs JF, Kwon Y-M, Freiberg AA, Li G (2007) In vivo anterior tibial post contact after posterior stabilizing total knee arthroplasty. J Orthop Res 25:1447–1453. CrossRefPubMedGoogle Scholar
  12. 12.
    Shimmin A, Martinez-Martos S, Owens J, Iorgulescu AD, Banks S (2015) Fluoroscopic motion study confirming the stability of a medial pivot design total knee arthroplasty. Knee 22:522–526. CrossRefPubMedGoogle Scholar
  13. 13.
    Steinbrück A, Schröder C, Woiczinski M, Fottner A, Pinskerova V, Müller PE et al (2016) Femorotibial kinematics and load patterns after total knee arthroplasty: an in vitro comparison of posterior-stabilized versus medial-stabilized design. Clin Biomech (Bristol, Avon) 33:42–48. CrossRefGoogle Scholar
  14. 14.
    Hamai S, Okazaki K, Shimoto T, Nakahara H, Higaki H, Iwamoto Y (2015) Continuous sagittal radiological evaluation of stair-climbing in cruciate-retaining and posterior-stabilized total knee arthroplasties using image-matching techniques. J Arthroplast 30:864–869. CrossRefGoogle Scholar
  15. 15.
    Li C, Hosseini A, Tsai T-Y, Kwon Y-M, Li G (2014) Articular contact kinematics of the knee before and after a cruciate retaining total knee arthroplasty. J Orthop Res 33:349–358. CrossRefPubMedGoogle Scholar
  16. 16.
    Belvedere C, Leardini A, Catani F, Pianigiani S, Innocenti B (2016) In vivo kinematics of knee replacement during daily living activities: condylar and post-cam contact assessment by three-dimensional fluoroscopy and finite element analyses. J Orthop Res:1–8. CrossRefGoogle Scholar
  17. 17.
    Hamai S, Miura H, Matsuda S, Shimoto T, Higaki H, Iwamoto Y (2010) Contact stress at the anterior aspect of the tibial post in posterior-stabilized total knee replacement. J Bone Joint Surg Am 92:1765–1773. CrossRefPubMedGoogle Scholar
  18. 18.
    Kuwashima U, Hamai S, Okazaki K, Ikebe S, Higaki H, Mizu-uchi H et al (2016) Contact stress analysis of the anterior tibial post in bi-cruciate stabilized and mobile-bearing posterior stabilized total knee arthroplasty designs. J Mech Behav Biomed Mater 60:460–467. CrossRefPubMedGoogle Scholar
  19. 19.
    Kawahara S, Matsuda S, Okazaki K, Tashiro Y, Mitsuyasu H, Nakahara H et al (2012) Relationship between the tibial anteroposterior axis and the surgical epicondylar axis in varus and valgus knees. Knee Surg Sports Traumatol Arthrosc 20:2077–2081. CrossRefPubMedGoogle Scholar
  20. 20.
    Mahaluxmivala J, Bankes MJ, Nicolai P, Aldam CH, Allen PW (2001) The effect of surgeon experience on component positioning in 673 press fit condylar posterior cruciate-sacrificing total knee arthroplasties. J Arthroplast 16:635–640. CrossRefGoogle Scholar
  21. 21.
    Scuderi GR, Bourne RB, Noble PC, Benjamin JB, Lonner JH, Scott WN (2011) The new Knee Society Knee scoring system. Clin Orthop Relat Res 470:3–19. CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Nakahara H, Okazaki K, Hamai S, Kawahara S, Higaki H, Mizu-uchi H et al (2015) Rotational alignment of the tibial component affects the kinematic rotation of a weight-bearing knee after total knee arthroplasty. Knee 22:201–205. CrossRefPubMedGoogle Scholar
  23. 23.
    Murakami K, Hamai S, Okazaki K, Ikebe S, Nakahara H, Higaki H et al (2017) Kinematic analysis of stair climbing in rotating platform cruciate-retaining and posterior-stabilized mobile-bearing total knee arthroplasties. Arch Orthop Trauma Surg 137:701–711. CrossRefPubMedGoogle Scholar
  24. 24.
    Berchuck M, Andriacchi TP, Bach BR, Reider B (1990) Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am 72:871–877CrossRefGoogle Scholar
  25. 25.
    Deleanu B, Prejbeanu R, Crisan D et al (2015) Gait characteristics before hardware removal in patients operated upon for tibial plateau fractures. Int Orthop 39:1411–1415. CrossRefPubMedGoogle Scholar
  26. 26.
    Wang H, Foster J, Franksen N et al (2017) Gait analysis of patients with an off-the-shelf total knee replacement versus customized bi-compartmental knee replacement. Int Orthop 328:147–146. CrossRefGoogle Scholar
  27. 27.
    Banks S, Bellemans J, Nozaki H, Whiteside LA, Harman M, Hodge WA (2003) Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties. Clin Orthop Relat Res 410:131–138CrossRefGoogle Scholar
  28. 28.
    Matsumoto K, Ogawa H, Yoshioka H, Akiyama H (2017) Postoperative anteroposterior laxity influences subjective outcome after total knee arthroplasty. J Arthroplast 32:1845–1849. CrossRefGoogle Scholar
  29. 29.
    Koh YG, Son J, Kwon SK, Kim HJ, Kwon OR, Kang KT (2017) Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with normal knee model. Bone Joint Res 6:557–565. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Okamoto S, Mizu-uchi H, Okazaki K, Hamai S, Nakahara H, Iwamoto Y (2015) Effect of tibial posterior slope on knee kinematics, quadriceps force, and patellofemoral contact force after posterior-stabilized total knee arthroplasty. J Arthroplast 30:1439–1343. CrossRefGoogle Scholar
  31. 31.
    Matić A, Petrović Savić S, Ristić B et al (2016) Infrared assessment of knee instability in ACL deficient patients. Int Orthop 40:385–391. CrossRefPubMedGoogle Scholar
  32. 32.
    Hoshino Y, Tashman S (2012) Internal tibial rotation during in vivo, dynamic activity induces greater sliding of tibio-femoral joint contact on the medial compartment. Knee Surg Sports Traumatol Arthrosc 20:1268–1275. CrossRefPubMedGoogle Scholar
  33. 33.
    Koo S, Andriacchi TP (2008) The knee joint center of rotation is predominantly on the lateral side during normal walking. J Biomech 41:1269–1273. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  • Koji Murakami
    • 1
  • Satoshi Hamai
    • 1
    Email author
  • Ken Okazaki
    • 2
  • Yifeng Wang
    • 3
  • Satoru Ikebe
    • 4
  • Hidehiko Higaki
    • 3
  • Takeshi Shimoto
    • 5
  • Hideki Mizu-uchi
    • 1
  • Yukio Akasaki
    • 1
  • Yasuharu Nakashima
    • 1
  1. 1.Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  2. 2.Department of Orthopaedic SurgeryTokyo Women’s Medical UniversityTokyoJapan
  3. 3.Department of Life Science, Faculty of Life ScienceKyushu Sangyo UniversityFukuokaJapan
  4. 4.Department of Creative Engineering, National Institute of TechnologyKitakyushu CollegeFukuokaJapan
  5. 5.Department of Information and Systems Engineering, Faculty of Information EngineeringFukuoka Institute of TechnologyFukuokaJapan

Personalised recommendations