Advertisement

International Orthopaedics

, Volume 42, Issue 11, pp 2675–2683 | Cite as

Healing, nonunion, and re-operation after internal fixation of diaphyseal and distal femoral fractures: a systematic review and meta-analysis

  • Riikka E. Koso
  • Cristina Terhoeve
  • R. Grant Steen
  • Robert Zura
Original Paper

Abstract

Purpose

Nonunion is a highly morbid complication that exacerbates the pain, disability and financial burden of distal and diaphyseal femur fractures. This study examined the modern rates of healing, nonunion, and other complications requiring reoperation of different fixation methods for distal and diaphyseal femur fractures.

Methods

A systematic review and meta-analysis of all records from PubMed, Embase and the Cochrane Review system was performed. Included studies had >20 acute, non-pathologic distal or diaphyseal femur fractures treated with primary internal fixation. Excluded were studies on abnormal patient/fracture populations, external fixation, or cement/bone graft use.

Results

Thirty-eight studies with 2,829 femoral shaft fractures and 11 studies with 505 distal femur fractures were included. Distal fractures had a lower healing rate (86.6% vs. 93.7%) and a higher re-operation rate (13.4% vs 6.1%) than shaft fractures (p < 0.00001), primarily due to higher rates of mechanical failure (p < 0.00001). Nonunion was the most frequent complication, occurring in 4.7% of distal fractures and 2.8% of shaft fractures. There was no difference between plate and nail fixation of distal fractures in healing, nonunion, or other causes of re-operation. Shaft fractures developed nonunion in 6.6% of unreamed nails and 2.1% of reamed nails (p = 0.002). Nonunion occurred in 2.3% of antegrade nailed fractures and 1.5% of retrograde nailed fractures (p = 0.66).

Conclusions

Approximately one out of every eight distal fractures and one of every 16 shaft fractures requires re-operation. The most common cause of fixation failure is nonunion. Further research is needed to improve outcomes, particularly in distal femur fractures.

Keywords

Femoral shaft fracture Mechanical failure Plate fixation Unreamed nail Reamed nail 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest. There was no funding source for this study. This article does not contain any studies with human participants or animals performed by any of the authors. This study was IRB exempt; informed consent from individual participants was not applicable to study methods.

Supplementary material

264_2018_3864_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 20 kb)

References

  1. 1.
    Lynch JR, Taitsman LA, Barei DP, Nork SE (2008) Femoral nonunion: risk factors and treatment options. J Am Acad Orthopaed Surg 16(2):88–97CrossRefGoogle Scholar
  2. 2.
    Kanakaris NK, Giannoudis PV (2007) The health economics of the treatment of long-bone non-unions. Injury 38(Suppl 2):S77–S84CrossRefGoogle Scholar
  3. 3.
    Bonafede M, Espindle D, Bower AG (2013) The direct and indirect costs of long bone fractures in a working age US population. J Med Econ 16(1):169–178.  https://doi.org/10.3111/13696998.2012.737391 CrossRefPubMedGoogle Scholar
  4. 4.
    Brinker MR, Trivedi A, O'Connor DP (2017) Debilitating effects of femoral nonunion on health-related quality of life. J Orthop Trauma 31(2):e37–e42.  https://doi.org/10.1097/BOT.0000000000000736 CrossRefPubMedGoogle Scholar
  5. 5.
    Robinson CM, Court-Brown CM, McQueen MM, Wakefield AE (2004) Estimating the risk of nonunion following nonoperative treatment of a clavicular fracture. J Bone Joint Surg Am 86-A(7):1359–1365CrossRefGoogle Scholar
  6. 6.
    Bhandari M, Fong K, Sprague S, Williams D, Petrisor B (2012) Variability in the definition and perceived causes of delayed unions and nonunions: a cross-sectional, multinational survey of orthopaedic surgeons. J Bone Joint Surg Am 94(15):e1091–e1096.  https://doi.org/10.2106/JBJS.K.01344 CrossRefPubMedGoogle Scholar
  7. 7.
    Castillo RC, Bosse MJ, MacKenzie EJ, Patterson BM, Group LS (2005) Impact of smoking on fracture healing and risk of complications in limb-threatening open tibia fractures. J Orthop Trauma 19 (3):151-157CrossRefGoogle Scholar
  8. 8.
    Gandhi A, Liporace F, Azad V, Mattie J, Lin SS (2006) Diabetic fracture healing. Foot Ankle Clin 11(4):805–824.  https://doi.org/10.1016/j.fcl.2006.06.009 CrossRefPubMedGoogle Scholar
  9. 9.
    McKee MD, DiPasquale DJ, Wild LM, Stephen DJ, Kreder HJ, Schemitsch EH (2003) The effect of smoking on clinical outcome and complication rates following Ilizarov reconstruction. J Orthop Trauma 17(10):663–667CrossRefGoogle Scholar
  10. 10.
    Murnaghan M, Li G, Marsh DR (2006) Nonsteroidal anti-inflammatory drug-induced fracture nonunion: an inhibition of angiogenesis? J Bone Joint Surg Am 88(Suppl 3):140–147.  https://doi.org/10.2106/JBJS.F.00454 CrossRefPubMedGoogle Scholar
  11. 11.
    Calori GM, Albisetti W, Agus A, Iori S, Tagliabue L (2007) Risk factors contributing to fracture non-unions. Injury 38(Suppl 2):S11–S18CrossRefGoogle Scholar
  12. 12.
    Sen MK, Miclau T (2007) Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury 38(Suppl 1):S75–S80.  https://doi.org/10.1016/j.injury.2007.02.012 CrossRefPubMedGoogle Scholar
  13. 13.
    Griffin XL, Parsons N, Zbaeda MM, McArthur J (2015) Interventions for treating fractures of the distal femur in adults. Cochrane Database Syst Rev 8:CD010606.  https://doi.org/10.1002/14651858.CD010606.pub2 CrossRefGoogle Scholar
  14. 14.
    von Keudell A, Shoji K, Nasr M, Lucas R, Dolan R, Weaver MJ (2016) Treatment options for distal femur fractures. J Orthop Trauma 30(Suppl 2):S25–S27.  https://doi.org/10.1097/BOT.0000000000000621 CrossRefGoogle Scholar
  15. 15.
    Beltran MJ, Gary JL, Collinge CA (2015) Management of distal femur fractures with modern plates and nails: state of the art. J Orthop Trauma 29(4):165–172.  https://doi.org/10.1097/BOT.0000000000000302 CrossRefPubMedGoogle Scholar
  16. 16.
    Kregor PJ, Stannard JA, Zlowodzki M, Cole PA (2004) Treatment of distal femur fractures using the less invasive stabilization system: surgical experience and early clinical results in 103 fractures. J Orthop Trauma 18(8):509–520CrossRefGoogle Scholar
  17. 17.
    Pietu G, Ehlinger M (2016) Minimally invasive internal fixation of distal femur fractures. Orthopaed Traumatol Surg Res 103(1S):S161–S169.  https://doi.org/10.1016/j.otsr.2016.06.025 Google Scholar
  18. 18.
    Tank JC, Schneider PS, Davis E, Galpin M, Prasarn ML, Choo AM, Munz JW, Achor TS, Kellam JF, Gary JL (2016) Early mechanical failures of the Synthes variable angle locking distal femur plate. J Orthop Trauma 30(1):e7–e11.  https://doi.org/10.1097/BOT.0000000000000391 CrossRefPubMedGoogle Scholar
  19. 19.
    Wang ZG, Zhang K, Jia L, Wang ZL, Liu D, Yang SY, Zhang DC, Zhang DG (2015) Closed femoral nailing with the technique of using a new femoral distractor: a preliminary report. J Biol Regul Homeost Agents 29(3):683–687PubMedGoogle Scholar
  20. 20.
    Russell TA (2011) Intramedullary nailing: evolutions of femoral intramedullary nailing: first to fourth generations. J Orthop Trauma 25(Suppl 3):S135–S138.  https://doi.org/10.1097/BOT.0b013e318237b2eb CrossRefPubMedGoogle Scholar
  21. 21.
    Ricci WM, Gallagher B, Haidukewych GJ (2009) Intramedullary nailing of femoral shaft fractures: current concepts. J Am Acad Orthopaed Surg 17(5):296–305CrossRefGoogle Scholar
  22. 22.
    Bong MR, Koval KJ, Egol KA (2006) The history of intramedullary nailing. Bull NYU Hospital Joint Dis 64(3-4):94–97Google Scholar
  23. 23.
    Ramasamy A, Eardley WG, Edwards DS, Clasper JC, Stewart MP (2016) Surgical advances during the first world war: the birth of modern orthopaedics. J R Army Med Corps 162(1):12–17.  https://doi.org/10.1136/jramc-2014-000365 CrossRefPubMedGoogle Scholar
  24. 24.
    Warmbrod JG, Yelton CL, Weiss AB (1976) Intramedullary nailing of femoral shaft fractures. Ten years' experience. Clin Orthop Relat Res (114):282-286CrossRefGoogle Scholar
  25. 25.
    Tornetta P 3rd, Tiburzi D (2000) Antegrade or retrograde reamed femoral nailing. A prospective, randomised trial. J Bone Joint Surg Brit 82(5):652–654CrossRefGoogle Scholar
  26. 26.
    Papadokostakis G, Papakostidis C, Dimitriou R, Giannoudis PV (2005) The role and efficacy of retrograding nailing for the treatment of diaphyseal and distal femoral fractures: a systematic review of the literature. Injury 36(7):813–822.  https://doi.org/10.1016/j.injury.2004.11.029 CrossRefPubMedGoogle Scholar
  27. 27.
    Kuhn KM, Ali A, Boudreau JA, Cannada LK, Watson JT (2013) Antegrade versus retrograde intramedullary nailing of proximal third femur fractures. J Surg Orthop Adv 22(4):263–269CrossRefGoogle Scholar
  28. 28.
    Koerner JD, Patel NM, Yoon RS, Gage MJ, Donegan DJ, Liporace FA (2014) Femoral malrotation after intramedullary nailing in obese versus non-obese patients. Injury 45(7):1095–1098.  https://doi.org/10.1016/j.injury.2014.02.010 CrossRefPubMedGoogle Scholar
  29. 29.
    Cannada LK, Jones TR, Guerrero-Bejarano M, Viehe T, Levy M, Farrell ED, Ostrum RF (2009) Retrograde intramedullary nailing of femoral diaphyseal fractures caused by low-velocity gunshots. Orthopedics 32(3):162CrossRefGoogle Scholar
  30. 30.
    Tucker MC, Schwappach JR, Leighton RK, Coupe K, Ricci WM (2007) Results of femoral intramedullary nailing in patients who are obese versus those who are not obese: a prospective multicenter comparison study. J Orthop Trauma 21(8):523–529.  https://doi.org/10.1097/BOT.0b013e31813347ac CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang F, Zhu L, Li Y, Chen A (2015) Retrograde versus antegrade intramedullary nailing for femoral fractures: a meta-analysis of randomized controlled trials. Curr Med Res Opin 31(10):1897–1902.  https://doi.org/10.1185/03007995.2015.1078783 CrossRefPubMedGoogle Scholar
  32. 32.
    Gansslen A, Gosling T, Hildebrand F, Pape HC, Oestern HJ (2014) Femoral shaft fractures in adults: treatment options and controversies. Acta Chir Orthop Traumatol Cechoslov 81(2):108–117Google Scholar
  33. 33.
    Li AB, Zhang WJ, Guo WJ, Wang XH, Jin HM, Zhao YM (2016) Reamed versus unreamed intramedullary nailing for the treatment of femoral fractures: a meta-analysis of prospective randomized controlled trials. Medicine 95(29):e4248.  https://doi.org/10.1097/MD.0000000000004248 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Duan X, Li T, Mohammed AQ, Xiang Z (2011) Reamed intramedullary nailing versus unreamed intramedullary nailing for shaft fracture of femur: a systematic literature review. Arch Orthop Trauma Surg 131(10):1445–1452.  https://doi.org/10.1007/s00402-011-1311-8 CrossRefPubMedGoogle Scholar
  35. 35.
    Buttaro M, Mocetti E, Alfie V, Paniego G, Pineiro L (2002) Fat embolism and related effects during reamed and unreamed intramedullary nailing in a pig model. J Orthop Trauma 16(4):239–244CrossRefGoogle Scholar
  36. 36.
    Hogel F, Gerlach UV, Sudkamp NP, Muller CA (2010) Pulmonary fat embolism after reamed and unreamed nailing of femoral fractures. Injury 41(12):1317–1322.  https://doi.org/10.1016/j.injury.2010.08.019 CrossRefPubMedGoogle Scholar
  37. 37.
    Wolinsky PR, Banit D, Parker RE, Shyr Y, Snapper JR, Rutherford EJ, Johnson KD (1998) Reamed intramedullary femoral nailing after induction of an "ARDS-like" state in sheep: effect on clinically applicable markers of pulmonary function. J Orthop Trauma 12(3):169–175 discussion 175-166 CrossRefGoogle Scholar
  38. 38.
    Miller AN, Deal D, Green J, Houle T, Brown W, Thore C, Stump D, Webb LX (2016) Use of the reamer/irrigator/aspirator decreases carotid and cranial embolic events in a canine model. J Bone Joint Surg Am 98(8):658–664.  https://doi.org/10.2106/JBJS.14.01176 CrossRefPubMedGoogle Scholar
  39. 39.
    Wang RY, Li R, Zdero R, Bell D, Blankstein M, Schemitsch EH (2012) The physiologic and pathologic effects of the reamer irrigator aspirator on fat embolism outcome: an animal study. J Orthop Trauma 26(9):e132–e137.  https://doi.org/10.1097/BOT.0b013e318238b22b CrossRefPubMedGoogle Scholar
  40. 40.
    Hall JA, McKee MD, Vicente MR, Morison ZA, Dehghan N, Schemitsch CE, Kreder HJ, Petrisor B, Schemitsch EH (2017) Prospective randomized clinical trial investigating the effect of the reamer-irrigator-aspirator on the volume of embolic load and respiratory function during intramedullary nailing of femoral shaft fractures. J Orthop Trauma 31(4):200–204.  https://doi.org/10.1097/BOT.0000000000000744 CrossRefPubMedGoogle Scholar
  41. 41.
    Giannoudis PV, Tzioupis C, Pape HC (2006) Fat embolism: the reaming controversy. Injury 37(Suppl 4):S50–S58.  https://doi.org/10.1016/j.injury.2006.08.040 CrossRefPubMedGoogle Scholar
  42. 42.
    Canadian Orthopaedic Trauma S (2003) Nonunion following intramedullary nailing of the femur with and without reaming. Results of a multicenter randomized clinical trial. J Bone Joint Surg Am 85-A(11):2093–2096CrossRefGoogle Scholar
  43. 43.
    Brumback RJ, Virkus WW (2000) Intramedullary nailing of the femur: reamed versus nonreamed. J Am Acad Orthopaed Surg 8(2):83–90CrossRefGoogle Scholar
  44. 44.
    Busse JW, Bhandari M, Sprague S, Johnson-Masotti AP, Gafni A (2005) An economic analysis of management strategies for closed and open grade I tibial shaft fractures. Acta Orthop 76(5):705–712.  https://doi.org/10.1080/17453670510041808 CrossRefPubMedGoogle Scholar
  45. 45.
    Ozdemir B, Akesen B, Demirag B, Bilgen MS, Durak K (2012) Long-term outcome of unreamed intramedullary nails in femur diaphyseal fractures. Turkish J Trauma Emerg Surg 18(2):147–152CrossRefGoogle Scholar
  46. 46.
    Reynders PA, Broos PL (2000) Healing of closed femoral shaft fractures treated with the AO unreamed femoral nail. A comparative study with the AO reamed femoral nail. Injury 31(5):367–371CrossRefGoogle Scholar
  47. 47.
    Dar GN, Tak SR, Kangoo KA, Halwai MA (2009) Bridge plate osteosynthesis using dynamic condylar screw (DCS) or retrograde intramedullary supracondylar nail (RIMSN) in the treatment of distal femoral fractures: comparison of two methods in a prospective randomized study. Turkish J Trauma Emerg Surg 15(2):148–153Google Scholar
  48. 48.
    Ehlinger M, Ducrot G, Adam P, Bonnomet F (2013) Distal femur fractures. Surgical techniques and a review of the literature. Orthopaed Traumatol Surg Res 99(3):353–360.  https://doi.org/10.1016/j.otsr.2012.10.014 CrossRefGoogle Scholar
  49. 49.
    Kilger E, Weis FC, Goetz AE, Frey L, Kesel K, Schutz A, Lamm P, Uberfuhr P, Knoll A, Felbinger TW, Peter K (2001) Intensive care after minimally invasive and conventional coronary surgery: a prospective comparison. Intensive Care Med 27(3):534–539CrossRefGoogle Scholar
  50. 50.
    Anakwe RE, Aitken SA, Khan LA (2008) Osteoporotic periprosthetic fractures of the femur in elderly patients: outcome after fixation with the LISS plate. Injury 39(10):1191–1197.  https://doi.org/10.1016/j.injury.2008.02.003 CrossRefPubMedGoogle Scholar
  51. 51.
    Canadian Orthopaedic Trauma S (2016) Are locking constructs in distal femoral fractures always best? A prospective multicenter randomized controlled trial comparing the less invasive stabilization system with the minimally invasive dynamic Condylar screw system. J Orthop Trauma 30(1):e1–e6.  https://doi.org/10.1097/BOT.0000000000000450 CrossRefGoogle Scholar
  52. 52.
    Kayali C, Agus H, Turgut A (2007) Successful results of minimally invasive surgery for comminuted supracondylar femoral fractures with LISS: comparative study of multiply injured and isolated femoral fractures. J Orthop Sci 12(5):458–465.  https://doi.org/10.1007/s00776-007-1156-8 CrossRefPubMedGoogle Scholar
  53. 53.
    Markmiller M, Konrad G, Sudkamp N (2004) Femur-LISS and distal femoral nail for fixation of distal femoral fractures: are there differences in outcome and complications? Clin Orthop Relat Res 426:252–257CrossRefGoogle Scholar
  54. 54.
    Southeast Fracture Consortium (2016) LCP versus LISS in the treatment of open and closed distal femur fractures: does it make a difference? J Orthop Trauma 30(6):e212–e216.  https://doi.org/10.1097/BOT.0000000000000507 CrossRefGoogle Scholar
  55. 55.
    Smith TO, Hedges C, MacNair R, Schankat K, Wimhurst JA (2009) The clinical and radiological outcomes of the LISS plate for distal femoral fractures: a systematic review. Injury 40(10):1049–1063.  https://doi.org/10.1016/j.injury.2009.01.005 CrossRefPubMedGoogle Scholar
  56. 56.
    Kao FC, Tu YK, Su JY, Hsu KY, Wu CH, Chou MC (2009) Treatment of distal femoral fracture by minimally invasive percutaneous plate osteosynthesis: comparison between the dynamic condylar screw and the less invasive stabilization system. J Trauma 67(4):719–726.  https://doi.org/10.1097/TA.0b013e31819d9cb2 CrossRefPubMedGoogle Scholar
  57. 57.
    Hanschen M, Aschenbrenner IM, Fehske K, Kirchhoff S, Keil L, Holzapfel BM, Winkler S, Fuechtmeier B, Neugebauer R, Luehrs S, Liener U, Biberthaler P (2014) Mono-versus polyaxial locking plates in distal femur fractures: a prospective randomized multicentre clinical trial. Int Orthop 38(4):857–863.  https://doi.org/10.1007/s00264-013-2210-0 CrossRefGoogle Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  • Riikka E. Koso
    • 1
  • Cristina Terhoeve
    • 2
  • R. Grant Steen
    • 2
  • Robert Zura
    • 2
    • 3
  1. 1.UT Health San AntonioSan AntonioUSA
  2. 2.Louisiana State University Health Sciences CenterNew OrleansUSA
  3. 3.Bioventus LLCDurhamUSA

Personalised recommendations