International Orthopaedics

, Volume 38, Issue 4, pp 881–889 | Cite as

Cellular reactions to biodegradable magnesium alloys on human growth plate chondrocytes and osteoblasts

  • Karin PichlerEmail author
  • Tanja Kraus
  • Elisabeth Martinelli
  • Patrick Sadoghi
  • Giuseppe Musumeci
  • Peter J. Uggowitzer
  • Annelie M. Weinberg
Original Paper



In recent decades operative fracture treatment using elastic stable intramedullary nails (ESINs) has mainly taken precedence over conservative alternatives in children. The development of biodegradable materials that could be used for ESINs would be a further step towards treatment improvement. Due to its mechanical and elastic properties, magnesium seems to be an ideal material for biodegradable implant application. The aim of this study was therefore to investigate the cellular reaction to biodegradable magnesium implants in vitro.


Primary human growth plate chondrocytes and MG63 osteoblasts were used for this study. Viability and metabolic activity in response to the eluate of a rapidly and a slower degrading magnesium alloy were investigated. Furthermore, changes in gene expression were assessed and live cell imaging was performed.


A superior performance of the slower degrading WZ21 alloy’s eluate was detected regarding cell viability and metabolic activity, cell proliferation and morphology. However, the ZX50 alloy’s eluate induced a favourable up-regulation of osteogenic markers in MG63 osteoblasts.


This study showed that magnesium alloys for use in biodegradable implant application are well tolerated in both osteoblasts and growth plate chondrocytes respectively.


Biodegradable magnesium Orthopaedics Immature skeleton Growth Biocompatibility 



The authors appreciate support from the Laura Bassi Center of Expertise BRIC (Bioresorbable Implants for Children; FFG – Austria) and from the Staub/Kaiser Foundation, Switzerland. Furthermore, they would like to thank Mr. Rudolf Schmied for his valuable technical assistance in art work preparation and Ms. Aranka Schauer for her help in carrying out some of the experiments.

Supplementary material

264_2013_2163_MOESM1_ESM.doc (34 kb)
Table 1 Concentrations of chemical substances used for the SBF (concentrations are indicated in mmol/L). (DOC 33.5 kb)
264_2013_2163_MOESM2_ESM.doc (40 kb)
Table 2 Element concentration after 48 h of implant incubation given in mg/ml SBF. (DOC 39.5 kb)
Video 1

hGPC treated with the ZX50 eluate. (MPEG 2.66 MB)

Video 2

hGPC treated with the WZ21 eluate. (MPEG 2.64 MB)

Video 3

hGPC treated with SBF. (MPEG 2.35 MB)

Video 4

Untreated hGPC. (MPEG 2.30 MB)

Video 5

MG63 osteoblasts treated with the ZX50 eluate. (MPEG 2.70 MB)

Video 6

MG63 osteoblasts treated with the WZ21 eluate. (MPEG 2.71 MB)

Video 7

MG63 osteoblasts treated with SBF. (MPEG 2.71 MB)

Video 8

Untreated MG63 osteoblasts. (MPEG 2.64 MB)


  1. 1.
    Ligier JN, Metaizeau JP, Prévot J (1983) Closed flexible medullary nailing in pediatric traumatology. Chir Pediatr 24(6):383–385PubMedGoogle Scholar
  2. 2.
    Simanovsky N, Tair MA, Simanovsky N, Porat S (2006) Removal of flexible titanium nails in children. J Pediatr Orthop 26(2):188–192PubMedGoogle Scholar
  3. 3.
    Huan ZG, Leeflang MA, Zhou J, Fratila-Apachitei LE, Duszczyk J (2010) In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys. J Mater Sci Mater Med 21(9):2623–2635PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734PubMedCrossRefGoogle Scholar
  5. 5.
    Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12(5–6):63–72CrossRefGoogle Scholar
  6. 6.
    Claes LE (1992) Mechanical characterization of biodegradable implants. Clin Mater 10(1–2):41–46PubMedCrossRefGoogle Scholar
  7. 7.
    Hänzi AC, Gerber I, Schinhammer M, Löffler JF, Uggowitzer PJ (2010) On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomater 6(5):1824–1833PubMedCrossRefGoogle Scholar
  8. 8.
    Yu K, Chen L, Zhao J, Li S, Dai Y, Huang Q, Yu Z (2012) In vitro corrosion behavior and in vivo biodegradation of biomedical β-Ca3(PO4)2/Mg-Zn composites. Acta Biomater 8(7):2845–2855PubMedCrossRefGoogle Scholar
  9. 9.
    Krause A, Höh N, Bormann D, Krause C, Bach F-W, Windhagen H, Meyer-Lindenberg A (2010) Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae. J Mater Sci 45(3):624–632CrossRefGoogle Scholar
  10. 10.
    Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26(17):3557–3563PubMedCrossRefGoogle Scholar
  11. 11.
    Castellani C, Lindtner RA, Hausbrandt P, Tschegg E, Stanzl-Tschegg SE, Zanoni G, Beck S, Weinberg AM (2011) Bone-implant interface strength and osseointegration: biodegradable magnesium alloy versus standard titanium control. Acta Biomater 7(1):432–440PubMedCrossRefGoogle Scholar
  12. 12.
    Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, HoustonGoogle Scholar
  13. 13.
    Kraus T, Fischerauer SF, Hänzi AC, Uggowitzer PJ, Löffler JF, Weinberg AM (2012) Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater 8(3):1230–1238PubMedCrossRefGoogle Scholar
  14. 14.
    Gu X, Zheng Y, Zhong S, Xi T, Wang J, Wang W (2010) Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses. Biomaterials 31(6):1093–1103PubMedCrossRefGoogle Scholar
  15. 15.
    Lu P, Cao L, Liu Y, Xu X, Wu X (2011) Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42. J Biomed Mater Res B Appl Biomater 96(1):101–109PubMedCrossRefGoogle Scholar
  16. 16.
    Chung R, Foster BK, Xian CJ (2011) Injury responses and repair mechanisms of the injured growth plate. Front Biosci (Schol Ed) 3:117–125CrossRefGoogle Scholar
  17. 17.
    Davies JH, Evans BA, Jenney ME, Gregory JW (2002) In vitro effects of chemotherapeutic agents on human osteoblast-like cells. Calcif Tissue Int 70(5):408–415PubMedCrossRefGoogle Scholar
  18. 18.
    Pichler K, Schmidt B, Fischerauer EE, Rinner B, Dohr G, Leithner A, Weinberg AM (2012) Behaviour of human physeal chondro-progenitorcells in early growth plate injury response in vitro. Int Orthop 36(9):1961–1966PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Lefebvre V, Peeters-Joris C, Vaes G (1990) Production of collagens, collagenase and collagenase inhibitor during the dedifferentiation of articular chondrocytes by serial subcultures. Biochim Biophys Acta 1051(3):266–275PubMedCrossRefGoogle Scholar
  20. 20.
    Chacko S, Abbott J, Holtzer S, Holtzer H (1969) The loss of phenotypic traits by differentiated cells. VI. Behavior of the progeny of a single chondrocyte. J Exp Med 130(2):417–442PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Coon HG (1966) Clonal stability and phenotypic expression of chick cartilage cells in vitro. Proc Natl Acad Sci U S A 55(1):66–73PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Lefebvre V, Smits P (2005) Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryo Today 75(3):200–212PubMedCrossRefGoogle Scholar
  23. 23.
    Gerstenfeld LC, Shapiro FD (1996) Expression of bone-specific genes by hypertrophic chondrocytes: implication of the complex functions of the hypertrophic chondrocyte during endochondral bone development. J Cell Biochem 62(1):1–9PubMedCrossRefGoogle Scholar
  24. 24.
    Gu XN, Xie XH, Li N, Zheng YF, Qin L (2012) In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater 8(6):2360–2374PubMedCrossRefGoogle Scholar
  25. 25.
    Zhou WR, Zheng YF, Leeflang MA, Zhou J (2013) Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application. Acta Biomater 9(10):8488–8498Google Scholar
  26. 26.
    Del Gaudio C, Bagalà P, Venturini M, Grandi C, Parnigotto PP, Bianco A, Montesperelli G (2012) Assessment of in vitro temporal corrosion and cytotoxicity of AZ91D alloy. J Mater Sci Mater Med 23(10):2553–2562PubMedCrossRefGoogle Scholar
  27. 27.
    Cipriano AF, Zhao T, Johnson I, Guan RG, Garcia S, Liu H (2013) In vitro degradation of four magnesium-zinc-strontium alloys and their cytocompatibility with human embryonic stem cells. J Mater Sci Mater Med 24(4):989–1003PubMedCrossRefGoogle Scholar
  28. 28.
    Feyerabend F, Witte F, Kammal M, Willumeit R (2006) Unphysiologically high magnesium concentrations support chondrocyte proliferation and redifferentiation. Tissue Eng 12(12):3545–3556PubMedCrossRefGoogle Scholar
  29. 29.
    Feser K, Kietzmann M, Bäumer W, Krause C, Bach FW (2011) Effects of degradable Mg-Ca alloys on dendritic cell function. J Biomater Appl 25(7):685–697PubMedCrossRefGoogle Scholar
  30. 30.
    Feyerabend F, Fischer J, Holtz J, Witte F, Willumeit R, Drücker H, Vogt C, Hort N (2010) Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater 6(5):1834–1842PubMedCrossRefGoogle Scholar
  31. 31.
    Li J, Song Y, Zhang S, Zhao C, Zhang F, Zhang X, Cao L, Fan Q, Tang T (2010) In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy. Biomaterials 31(22):5782–5788PubMedCrossRefGoogle Scholar
  32. 32.
    Li L, Gao J, Wang Y (2004) Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surf Coat Technol 185(1):92–98CrossRefGoogle Scholar
  33. 33.
    Pietak A, Mahoney P, Dias GJ, Staiger MP (2007) Bone-like matrix formation on magnesium and magnesium alloys. J Mater Sci Mater Med 19(1):407–415PubMedCrossRefGoogle Scholar
  34. 34.
    Witte F, Feyerabend F, Maier P, Fischer J, Störmer M, Blawert C, Dietzel W, Hort N (2007) Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials 28(13):2163–2174PubMedCrossRefGoogle Scholar
  35. 35.
    Yang C, Yuan G, Zhang J, Tang Z, Zhang X, Dai K (2010) Effects of magnesium alloys extracts on adult human bone marrow-derived stromal cell viability and osteogenic differentiation. Biomed Mater 5(4):045005PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang S, Li J, Song Y, Zhao C, Zhang X, Xie C, Zhang Y, Tao H, He Y, Jiang Y, Bian Y (2009) In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy. Mater Sci Eng C 29(6):1907–1912CrossRefGoogle Scholar
  37. 37.
    Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M (2002) Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 62(2):175–184PubMedCrossRefGoogle Scholar
  38. 38.
    Zreiqat H, Valenzuela SM, Nissan BB, Roest R, Knabe C, Radlanski RJ, Renz H, Evans PJ (2005) The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. Biomaterials 26(36):7579–7586PubMedCrossRefGoogle Scholar
  39. 39.
    Coleman JE (1992) Structure and mechanism of alkaline phosphatase. Annu Rev Biophys Biomol Struct 21:441–483PubMedCrossRefGoogle Scholar
  40. 40.
    Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456–469PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Gu XN, Li N, Zhou WR, Zheng YF, Zhao X, Cai QZ, Ruan L (2011) Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy. Acta Biomater 7(4):1880–1889PubMedCrossRefGoogle Scholar
  42. 42.
    Michalke B, Halbach S, Nischwitz V (2009) JEM spotlight: metal speciation related to neurotoxicity in humans. J Environ Monit 11(5):939–954PubMedCrossRefGoogle Scholar
  43. 43.
    Drynda A, Deinet N, Braun N, Peuster M (2009) Rare earth metals used in biodegradable magnesium-based stents do not interfere with proliferation of smooth muscle cells but do induce the upregulation of inflammatory genes. J Biomed Mater Res A 91(2):360–369PubMedCrossRefGoogle Scholar
  44. 44.
    Hirano S, Suzuki KT (1996) Exposure, metabolism, and toxicity of rare earths and related compounds. Environ Health Perspect 104(Suppl 1):85–95PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Wells WH Jr, Wells VL (2012) The lanthanides, rare earth metals. In: Bingham E, Cohrssen B (eds) Patty’s toxicology. Wiley, HobokenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karin Pichler
    • 1
    • 5
    Email author
  • Tanja Kraus
    • 2
  • Elisabeth Martinelli
    • 1
  • Patrick Sadoghi
    • 1
  • Giuseppe Musumeci
    • 3
  • Peter J. Uggowitzer
    • 4
  • Annelie M. Weinberg
    • 1
  1. 1.Department of Orthopaedic SurgeryMedical University of GrazGrazAustria
  2. 2.Department of Paediatric Orthopaedic SurgeryMedical University of GrazGrazAustria
  3. 3.Department of Bio-Medical SciencesUniversity of CataniaCataniaItaly
  4. 4.Department of MaterialsETH ZurichZurichSwitzerland
  5. 5.Department of Orthopaedic SurgeryMedical University of GrazGrazAustria

Personalised recommendations