Cancer Immunology, Immunotherapy

, Volume 68, Issue 12, pp 1909–1920 | Cite as

Autophagy inhibition induces the repolarisation of tumour-associated macrophages and enhances chemosensitivity of laryngeal cancer cells to cisplatin in mice

  • Ying Guo
  • Yufang Feng
  • Xinhua Cui
  • Qirong Wang
  • Xinliang PanEmail author
Original Article


Tumour-associated macrophages (TAMs) are the key components in the tumour microenvironment. TAMs have two major subtypes, M1 and M2. M1 macrophages are tumour inhibitory, while M2 macrophages are tumour promotive. Repolarising TAMs from M2 to M1 is a promising strategy in cancer treatment. M1 and M2 macrophages were generated from murine bone marrow-derived macrophages (BMDMs). We found that chloroquine (CQ), an autophagy inhibitor, was able to repolarise M2 macrophages to the anti-tumour M1 phenotype. The repolarised macrophages demonstrated higher phagocytotic activity towards Hep-2 laryngeal tumour cells and re-sensitised Hep-2 cells to cisplatin (CDDP) treatment in vitro. While CQ did not demonstrate cytotoxicity to Hep-2 cells in vitro, CQ treatment reduced Hep-2 laryngeal tumour growth in vivo and improved CDDP treatment outcomes. It seems that CQ-induced M2-to-M1 macrophage repolarisation played an important role in tumour growth inhibition, and the CQ/CDDP combined therapy might have clinical potential in laryngeal cancer treatment.


Chloroquine (CQ) Tumour-associated macrophages (TAMs) Autophagy inhibition Macrophage repolarisation Hep-2 laryngeal cancer 





American type culture collection


Bone marrow-derived macrophage




Conditioned media




Dulbecco’s modified Eagle medium


Fetal bovine serum


Glyceraldehyde-3-phosphate dehydrogenase




Microtubule-associated protein 1 light chain 3






Recombinant human macrophage colony stimulating factor


Mannose receptor-1


3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide


Nitric oxide synthase


Phosphate buffer saline


Quantitative real-time polymerase chain reaction


Tumour-associated macrophage


Author contributions

YG, YF, XC, QW conducted the experiments, YG and YF analysed the data. YG and XP wrote the manuscript. XP conceived the study.


This study was funded by the Project of Medical and Health Technology Development Program in Shandong (No. 2017WSB04024).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Animal studies on C57BL/6 mice and nu/nu nude mice complied with the Guidelines for Animal Studies in Shandong University. Ethical Committee in Shandong Provincial Qianfoshan Hospital reviewed and approved this study (#SDQFSH-2017048).

Animal source

C57BL/6 mice and nu/nu nude mice were purchased from Nanjing Model Animal Institute (Nanjing, China).

Cell line authentication

Human laryngeal cancer Hep-2 cell line and GFP-labelled Hep-2-GFP cells were obtained from American Type Culture Collection (ATCC, Manassas, VA, USA) and cells were verified by A Short Tandem Repeat analysis.

Supplementary material

262_2019_2415_MOESM1_ESM.pdf (151 kb)
Supplementary material 1 (PDF 150 kb)


  1. 1.
    Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG, Li MO (2014) The cellular and molecular origin of tumor-associated macrophages. Science 344:921–925. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Liu Y, Cao XT (2015) The origin and function of tumor-associated macrophages. Cell Mol Immunol 12:4. CrossRefGoogle Scholar
  3. 3.
    Ni Y-H, Ding L, Huang X-F, Dong Y-c, Hu Q-G, Hou Y-Y (2015) Microlocalization of CD68(+) tumor-associated macrophages in tumor stroma correlated with poor clinical outcomes in oral squamous cell carcinoma patients. Tumor Biol 36:5291–5298. CrossRefGoogle Scholar
  4. 4.
    Mantovani A, Allavena P (2015) The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med 212:435–445. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jinushi M, Chiba S, Yoshiyama H, Masutomi K, Kinoshita I, Dosaka-Akita H, Yagita H, Takaoka A, Tahara H (2011) Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci USA 108:12425–12430. CrossRefPubMedGoogle Scholar
  6. 6.
    Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, Belaygorod L, Carpenter D, Collins L, Piwnica-Worms D, Hewitt S, Udupi GM, Gallagher WM, Wegner C, West BL, Wang-Gillam A, Goedegebuure P, Linehan DC, DeNardo DG (2013) Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Can Res 73:1128–1141. CrossRefGoogle Scholar
  7. 7.
    Nakasone ES, Askautrud HA, Kees T, Park J-H, Plaks V, Ewald AJ, Fein M, Rasch MG, Tan Y-X, Qiu J, Park J, Sinha P, Bissell MJ, Frengen E, Werb Z, Egeblad M (2012) Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21:488–503. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lin J-Y, Li X-Y, Tadashi N, Dong P (2011) Clinical significance of tumor-associated macrophage infiltration in supraglottic laryngeal carcinoma. Chin J Cancer 30:280–286CrossRefGoogle Scholar
  9. 9.
    Huang Y, Snuderl M, Jain RK (2011) Polarization of tumor-associated macrophages: a novel strategy for vascular normalization and antitumor immunity. Cancer Cell 19:1–2. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555. CrossRefPubMedGoogle Scholar
  11. 11.
    Colegio OR, Ngoc-Quynh C, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873. CrossRefPubMedGoogle Scholar
  13. 13.
    Tsujimoto Y, Shimizu S (2005) Another way to die: autophagic programmed cell death. Cell Death differ 12:1528–1534. CrossRefPubMedGoogle Scholar
  14. 14.
    Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741. CrossRefPubMedGoogle Scholar
  15. 15.
    Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Clarke AJ, Simon AK (2019) Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat Rev Immunol 19:170–183. CrossRefPubMedGoogle Scholar
  17. 17.
    Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Ahmed RLMS, Kohler RH, Pittet MJ, Weissleder R (2018) TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng 2:578. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yuan H, Jiang W, von Roemeling CA, Qie Y, Liu X, Chen Y, Wang Y, Wharen RE, Yun K, Bu G, Knutson KL, Kim BYS (2017) Multivalent bi-specific nanobioconjugate engager for targeted cancer immunotherapy. Nat Nanotechnol 12:763. CrossRefPubMedGoogle Scholar
  19. 19.
    Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7:27–31. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell’Antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25:717–729. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13:722–737. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kulkarni A, Chandrasekar V, Natarajan SK, Ramesh A, Pandey P, Nirgud J, Bhatnagar H, Ashok D, Ajay AK, Sengupta S (2018) A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. Nat Biomed Eng 2:589. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Li R, Zhou R, Wang H, Li W, Pan M, Yao X, Zhan W, Yang S, Xu L, Ding Y, Zhao L (2019) Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kurahara H, Takao S, Maemura K, Mataki Y, Kuwahata T, Maeda K, Sakoda M, Iino S, Ishigami S, Ueno S, Shinchi H, Natsugoe S (2013) M2-polarized tumor-associated macrophage infiltration of regional lymph nodes is associated with nodal lymphangiogenesis and occult nodal involvement in pN0 pancreatic cancer. Pancreas 42:155–159. CrossRefPubMedGoogle Scholar
  25. 25.
    Chen Y, Wen H, Zhou C, Su Q, Lin Y, Xie Y, Huang Y, Qiu Q, Lin J, Huang X, Tan W, Min C, Wang C (2019) TNF-alpha derived from M2 tumor-associated macrophages promotes epithelial-mesenchymal transition and cancer stemness through the Wnt/beta-catenin pathway in SMMC-7721 hepatocellular carcinoma cells. Exp Cell Res. CrossRefPubMedGoogle Scholar
  26. 26.
    Lepique AP, Perez Daghastanli KR, Cuccovia IM, Villa LL (2009) HPV16 tumor associated macrophages suppress antitumor T cell responses. Clin Cancer Res 15:4391–4400. CrossRefPubMedGoogle Scholar
  27. 27.
    Chen Y, Bi L, Luo H, Jiang Y, Chen F, Wang Y, Wei G, Chen W (2019) Water extract of ginseng and astragalus regulates macrophage polarization and synergistically enhances DDP’s anticancer effect. J Ethnopharmacol 232:11–20. CrossRefPubMedGoogle Scholar
  28. 28.
    Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V, Setty M, Leslie CS, Oei Y, Pedraza A, Zhang J, Brennan CW, Sutton JC, Holland EC, Daniel D, Joyce JA (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Guo B, Li L, Guo J, Liu A, Wu J, Wang H, Shi J, Pang D, Cao Q (2017) M2 tumor-associated macrophages produce interleukin-17 to suppress oxaliplatin-induced apoptosis in hepatocellular carcinoma. Oncotarget 8:44465–44476. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Degtyarev M, De Maziere A, Orr C, Lin J, Lee BB, Tien JY, Prior WW, van Dijk S, Wu H, Gray DC, Davis DP, Stern HM, Murray LJ, Hoeflich KP, Klumperman J, Friedman LS, Lin K (2008) Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol 183:101–116. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ohri CM, Shikotra A, Green RH, Waller DA, Bradding P (2009) Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. Eur Respir J 33:118–126. CrossRefPubMedGoogle Scholar
  32. 32.
    Perdiguero EG, Geissmann F (2014) Identifying the infiltrators. Science 344:801–802. CrossRefGoogle Scholar
  33. 33.
    Xiao M, Zhang J, Chen W, Chen W (2018) M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. J Exp Clin Cancer Res. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Investig 117:326–336. CrossRefPubMedGoogle Scholar
  35. 35.
    Martin AP, Mitchell C, Rahmani M, Nephew KP, Grant S, Dent P (2009) Inhibition of MCL-1 enhances lapatinib toxicity and overcomes lapatinib resistance via BAK-dependent autophagy. Cancer Biol Ther 8:2084–2096CrossRefGoogle Scholar
  36. 36.
    Hamed HA, Yacoub A, Park MA, Eulitt P, Sarkar D, Dimitriev IP, Chen C-S, Grant S, Curiel DT, Fisher PB, Dent P (2010) OSU-03012 enhances Ad.mda-7-induced GBM cell killing via ER stress and autophagy and by decreasing expression of mitochondrial protective proteins. Cancer Biol Ther 9:526–536. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhong Z, Sanchez-Lopez E, Karin M (2016) Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell 166:288–298. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ying Guo
    • 1
  • Yufang Feng
    • 2
  • Xinhua Cui
    • 1
  • Qirong Wang
    • 1
  • Xinliang Pan
    • 3
    Email author
  1. 1.Department of Otorhinolaryngology, Shandong Provincial Qianfoshan HospitalShandong UniversityJinanChina
  2. 2.Department of OtorhinolaryngologyWeifang Yidu Central HospitalWeifangChina
  3. 3.Department of Otorhinolaryngology, Qilu HospitalShandong UniversityJinanChina

Personalised recommendations