Cancer Immunology, Immunotherapy

, Volume 68, Issue 9, pp 1547–1559 | Cite as

A phase II study of the L19IL2 immunocytokine in combination with dacarbazine in advanced metastatic melanoma patients

  • Benjamin Weide
  • Thomas Eigentler
  • Chiara Catania
  • Paolo Antonio Ascierto
  • Stefano Cascinu
  • Jürgen C. Becker
  • Axel Hauschild
  • Antonella Romanini
  • Riccardo Danielli
  • Reinhard Dummer
  • Uwe Trefzer
  • Giuliano EliaEmail author
  • Dario NeriEmail author
  • Claus GarbeEmail author
Clinical Trial Report


Engineered cytokine products represent promising agents for the treatment of immunogenic tumors, such as malignant melanoma, in addition to immune checkpoint inhibitors. Here we describe the results of a controlled, randomized phase II clinical trial, aimed at assessing the therapeutic potential of L19IL2, a fully human fusion protein consisting of the L19 antibody specific to the alternatively spliced extra-domain B of fibronectin, fused to human interleukin-2 in advanced metastatic melanoma. In one arm, patients received dacarbazine (DTIC; 1000 mg/m2 of body surface on day 1 of 21-day cycles) as single agent, while in two other arms L19IL2 (22.5 million international units of IL2 equivalents) was added, based on two different schedules of administration. In total, 69 patients with stage IV melanoma were enrolled (24 in the dacarbazine arm, 23 and 22 in the other combination arms, respectively) and 67 received treatment. Analyses of efficacy results show a statistically significant benefit in terms of overall response rate and median progression-free survival for patients receiving L19IL2 in combination with DTIC, compared to DTIC as single agent. In light of these results, further clinical investigations with L19IL2 (alone or in combination with other agents) are warranted.


Stage IV melanoma Immunocytokine L19IL2 Dacarbazine Phase II study 



Alanine amino transferase


Common Terminology Criteria for Adverse Events


Complete response


Computed tomography




Eastern Cooperative Oncology Group


Extra-domain B


Gamma glutamyl transpeptidase


High-dose interleukin 2


Multigated radionuclide angiography


National Cancer Institute


Objective response rate


Partial response


Progressive disease


Recommended dose


Serious adverse event


Stable disease


Upper limit of normal



We thank all patients, families, staff, and investigators of the participating hospitals. We are very grateful to Dr. Jacopo Piazzi, Philogen S.p.A., for his support with data management and statistical analysis.

Author contributions

Study conception and design: BW, TE, CC, PAA, SC, JCB, AH, AR, RD, RD, UT, DN, CG. Patient recruitment and management: BW, TE, CC, PAA, SC, JCB, AH, AR, RD, RD, UT, CG. Data acquisition, management, analysis, and interpretation: BW, AH, GE, DN, CG. Manuscript preparation: BW, AH, GE, DN, CG.


This study was funded by Philogen S.p.A. The sponsor was involved in study design, data collection, analysis, and interpretation, writing of the article, and in the decision to submit the article for publication.

Compliance with ethical standards

Conflict of interest

Benjamin Weide has received speaker or advisory board honoraria from Amgen, CureVac, Philogen, Novartis as well as research funding from Bristol-Myers Squibb (BMS), Merck, Sharp & Dohme (MSD) and Philogen. Paolo Ascierto reports grants and personal fees from BMS, grants and personal fees from Roche-Genentech, personal fees from MSD, grants and personal fees from Array, personal fees from Novartis, personal fees from Merck Serono, personal fees from Pierre Fabre, personal fees from Incyte, personal fees from Genmab, personal fees from NewLink Genetics, personal fees from Medimmune, personal fees from AstraZeneca, personal fees from Syndax, personal fees from Sun Pharma, personal fees from Sanofi, personal fees from Idera, personal fees from Ultimovacs, personal fees from Sandoz, personal fees from Immunocore, personal fees from 4SC, outside the submitted work; Jürgen C. Becker has received speaker honoraria from Amgen, Merck Serono, and Pfizer, advisory board honoraria from Amgen, CureVac, eTheRNA, Lytix, Merck Serono, Novartis, Rigontec, and Takeda as well as research funding from Alcedis, Boehringer Ingelheim, BMS and Merck Serono; he also received travel support from 4SC and Incyte; Axel Hauschild received clinical trial support, speaker´s honoraria, or consultancy fees from the following companies: Amgen, BMS, Merck Serono, MSD, Novartis, Philogen, Pierre Fabre, Provectus, Regeneron, Roche, OncoSec, Sanofi-Genzyme, and Sun Pharma; Reinhard Dummer reports intermittent, project focused consulting and/or advisory relationships with Novartis, MSD, BMS, Roche, Amgen, Takeda, Pierre Fabre, Sun Pharma, Sanofi, Catalym, Second Genome outside the submitted work; Giuliano Elia is an employee of Philochem AG, a company of the Philogen group; Dario Neri is shareholder and Board Member of Philogen S.p.A.; Claus Garbe reports personal fees from Philogen, during the conduct of the study; personal fees from Amgen, personal fees from MSD, grants and personal fees from Novartis, personal fees from NeraCare, grants and personal fees from BMS, personal fees from Philogen, grants and personal fees from Roche, grants and personal fees from Sanofi, outside the submitted work. All other authors declare no conflict of interest.

Ethical approval and ethical standards

The protocol was approved by the regulatory authorities Paul-Ehrlich-Institut in Germany (authorization no. 593/01 of 01/07/2008), ISS in Italy (authorization of 21/02/2008), Swissmedic in Switzerland (authorization no. 2011DR2225 of 30/12/2011) and BASG in Austria (authorizations nos. 717349/0001 and 717350/0001 of 06/04/2011). The study was also approved by the ethics committee of the coordinating center for the 3 participating centers in Germany (Ethikkommission an der Medizinischen Fakultät der Eberhard-Karls-Universitäts und am Universitätsklinikum Tübingen, Tübingen, Germany—approval number: 33/2008AMG1 of 01/09/2010 for Tübingen; and of 25/01/2011 for Kiel and Berlin); by the central ethic committee at IEO in Milan, Italy (authorization no. R363-IEO S387/607 of 21/02/2008) and four local ethics committees for the other four participating centers in Italy (Ancona, approval number 210520 of 02/12/2010; Naples, approval number CEI/538/10 of 25/11/2010; Pisa, approval number 2497/2008 of 01/12/2010; and Siena, approval number 82/2009 of 21/10/2010); by the local ethics committee for the participating center in Switzerland (Kantonale Ethikkommission Zürich (KEK), Zürich, Switzerland—approval number: KEK-ZH-Nr. 2011-0362 of 15/11/2011); and by the local ethics committee for the participating center in Austria (Ethikkommission Medizinischer Universitäts Graz, Graz, Austria—approval number 23-176 ex 10/11 of 06/04/2011). The study was conducted in accordance with Good Clinical Practice guidelines (EudraCT No.: 2007-005737-11; Identifier: NCT01055522). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent on being treated as well as on the use of generated data for research purposes and publication was obtained from all individual participants included in the study.

Supplementary material

262_2019_2383_MOESM1_ESM.pdf (312 kb)
Supplementary material 1 (PDF 311 kb)


  1. 1.
    Korn EL, Liu PY, Lee SJ et al (2008) Meta-analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. J Clin Oncol 26(4):527–534. CrossRefPubMedGoogle Scholar
  2. 2.
    Garbe C, Peris K, Hauschild A et al (2010) Diagnosis and treatment of melanoma: European consensus-based interdisciplinary guideline. Eur J Cancer 46(2):270–283. CrossRefPubMedGoogle Scholar
  3. 3.
    Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Robert C, Ribas A, Wolchok JD et al (2014) Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 384(9948):1109–1117. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526. CrossRefPubMedGoogle Scholar
  6. 6.
    Schachter J, Ribas A, Long GV et al (2017) Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet 390(10105):1853–1862. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Falchook GS, Lewis KD, Infante JR et al (2012) Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol 13(8):782–789. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Falchook GS, Long GV, Kurzrock R et al (2012) Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 379(9829):1893–1901. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sosman JA, Kim KB, Schuchter L et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366(8):707–714. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Smith FO, Downey SG, Klapper JA et al (2008) Treatment of metastatic melanoma using interleukin-2 alone or in conjunction with vaccines. Clin Cancer Res 14(17):5610–5618. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Atkins MB (2009) Treatment selection for patients with metastatic renal cell carcinoma: identification of features favoring upfront IL-2-based immunotherapy. Med Oncol 26(Suppl 1):18–22. CrossRefPubMedGoogle Scholar
  12. 12.
    Herper M (2018) Bristol-Myers to pay largest fee in biotech history for Nektar cancer drug. Forbes. Retrieved from
  13. 13.
    Penichet ML, Dela Cruz JS, Shin SU, Morrison SL (2001) A recombinant IgG3-(IL-2) fusion protein for the treatment of human HER2/neu expressing tumors. Hum Antibodies 10(1):43–49CrossRefPubMedGoogle Scholar
  14. 14.
    Yang RK, Kalogriopoulos NA, Rakhmilevich AL et al (2012) Intratumoral hu14.18-IL-2 (IC) induces local and systemic antitumor effects that involve both activated T and NK cells as well as enhanced IC retention. J Immunol 189(5):2656–2664. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Neri D, Sondel PM (2016) Immunocytokines for cancer treatment: past, present and future. Curr Opin Immunol 40:96–102. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Carnemolla B, Borsi L, Balza E et al (2002) Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood 99(5):1659–1665. CrossRefPubMedGoogle Scholar
  17. 17.
    Schliemann C, Palumbo A, Zuberbuhler K, Villa A, Kaspar M, Trachsel E, Klapper W, Menssen HD, Neri D (2009) Complete eradication of human B-cell lymphoma xenografts using rituximab in combination with the immunocytokine L19-IL2. Blood 113(10):2275–2283. CrossRefPubMedGoogle Scholar
  18. 18.
    Schwager K, Hemmerle T, Aebischer D, Neri D (2013) The immunocytokine L19-IL2 eradicates cancer when used in combination with CTLA-4 blockade or with L19-TNF. J Invest Dermatol 133(3):751–758. CrossRefPubMedGoogle Scholar
  19. 19.
    Ribas A, Kirkwood JM, Atkins MB, Whiteside TL, Gooding W, Kovar A, Gillies SD, Kashala O, Morse MA (2009) Phase I/II open-label study of the biologic effects of the interleukin-2 immunocytokine EMD 273063 (hu14.18-IL2) in patients with metastatic malignant melanoma. J Transl Med 7:68. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shusterman S, London WB, Gillies SD et al (2010) Antitumor activity of hu14.18-IL2 in patients with relapsed/refractory neuroblastoma: a Children’s Oncology Group (COG) phase II study. J Clin Oncol 28(33):4969–4975. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lansigan F, Nakamura R, Quick D, Vlock D, Raubitschek AA, Gillies SD, Bachanova V (2016) Phase I/II study of an anti-CD20-interleukin-2 immunocytokine DI-Leu16-IL2 in patients with relapsed b-cell lymphoma (NHL). J Clin Oncol 34(15_suppl):e19046. CrossRefGoogle Scholar
  22. 22.
    Gutbrodt KL, Schliemann C, Giovannoni L, Frey K, Pabst T, Klapper W, Berdel WE, Neri D (2013) Antibody-based delivery of interleukin-2 to neovasculature has potent activity against acute myeloid leukemia. Sci Transl Med 5(201):201ra118. CrossRefPubMedGoogle Scholar
  23. 23.
    Catania C, Maur M, Berardi R et al (2015) The tumor-targeting immunocytokine F16-IL2 in combination with doxorubicin: dose escalation in patients with advanced solid tumors and expansion into patients with metastatic breast cancer. Cell Adhes Migr 9(1–2):14–21. CrossRefGoogle Scholar
  24. 24.
    Weide B, Eigentler TK, Pflugfelder A et al (2014) Intralesional treatment of stage III metastatic melanoma patients with L19-IL2 results in sustained clinical and systemic immunologic responses. Cancer Immunol Res 2(7):668–678. CrossRefPubMedGoogle Scholar
  25. 25.
    Johannsen M, Spitaleri G, Curigliano G et al (2010) The tumour-targeting human L19-IL2 immunocytokine: preclinical safety studies, phase I clinical trial in patients with solid tumours and expansion into patients with advanced renal cell carcinoma. Eur J Cancer 46(16):2926–2935. CrossRefPubMedGoogle Scholar
  26. 26.
    Eigentler TK, Weide B, de Braud F et al (2011) A dose-escalation and signal-generating study of the immunocytokine L19-IL2 in combination with dacarbazine for the therapy of patients with metastatic melanoma. Clin Cancer Res 17(24):7732–7742. CrossRefPubMedGoogle Scholar
  27. 27.
    Balza E, Carnemolla B, Mortara L, Castellani P, Soncini D, Accolla RS, Borsi L (2010) Therapy-induced antitumor vaccination in neuroblastomas by the combined targeting of IL-2 and TNFalpha. Int J Cancer 127(1):101–110. CrossRefPubMedGoogle Scholar
  28. 28.
    Balza E, Mortara L, Sassi F et al (2006) Targeted delivery of tumor necrosis factor-alpha to tumor vessels induces a therapeutic T cell-mediated immune response that protects the host against syngeneic tumors of different histologic origin. Clin Cancer Res 12(8):2575–2582. CrossRefPubMedGoogle Scholar
  29. 29.
    Gutbrodt KL, Casi G, Neri D (2014) Antibody-based delivery of IL2 and cytotoxics eradicates tumors in immunocompetent mice. Mol Cancer Ther 13(7):1772–1776. CrossRefPubMedGoogle Scholar
  30. 30.
    Marlind J, Kaspar M, Trachsel E, Sommavilla R, Hindle S, Bacci C, Giovannoni L, Neri D (2008) Antibody-mediated delivery of interleukin-2 to the stroma of breast cancer strongly enhances the potency of chemotherapy. Clin Cancer Res 14(20):6515–6524. CrossRefPubMedGoogle Scholar
  31. 31.
    Mortara L, Balza E, Sassi F et al (2007) Therapy-induced antitumor vaccination by targeting tumor necrosis factor alpha to tumor vessels in combination with melphalan. Eur J Immunol 37(12):3381–3392. CrossRefPubMedGoogle Scholar
  32. 32.
    Rekers NH, Zegers CM, Yaromina A et al (2015) Combination of radiotherapy with the immunocytokine L19-IL2: additive effect in a NK cell dependent tumour model. Radiother Oncol 116(3):438–442. CrossRefPubMedGoogle Scholar
  33. 33.
    Zegers CM, Rekers NH, Quaden DH et al (2015) Radiotherapy combined with the immunocytokine L19-IL2 provides long-lasting antitumor effects. Clin Cancer Res 21(5):1151–1160. CrossRefPubMedGoogle Scholar
  34. 34.
    Spitaleri G, Berardi R, Pierantoni C et al (2013) Phase I/II study of the tumour-targeting human monoclonal antibody-cytokine fusion protein L19-TNF in patients with advanced solid tumours. J Cancer Res Clin Oncol 139(3):447–455. CrossRefPubMedGoogle Scholar
  35. 35.
    Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. CrossRefPubMedGoogle Scholar
  36. 36.
    Frey K, Fiechter M, Schwager K, Belloni B, Barysch MJ, Neri D, Dummer R (2011) Different patterns of fibronectin and tenascin-C splice variants expression in primary and metastatic melanoma lesions. Exp Dermatol 20(8):685–688. CrossRefPubMedGoogle Scholar
  37. 37.
    Schwartzentruber DJ (2001) Guidelines for the safe administration of high-dose interleukin-2. J Immunother 24(4):287–293CrossRefPubMedGoogle Scholar
  38. 38.
    Ma C, Armstrong AW (2014) Severe adverse events from the treatment of advanced melanoma: a systematic review of severe side effects associated with ipilimumab, vemurafenib, interferon alfa-2b, dacarbazine and interleukin-2. J Dermatolog Treat 25(5):401–408. CrossRefPubMedGoogle Scholar
  39. 39.
    Wu CF, Wang HM, Huang WK, Chang JW (2015) Efficacy and safety of bio-chemotherapy with dacarbazine plus interleukin-2 in patients with unresectable malignant melanoma. Asia Pac J Clin Oncol 11(4):314–318. CrossRefPubMedGoogle Scholar
  40. 40.
    Erba PA, Sollini M, Orciuolo E et al (2012) Radioimmunotherapy with radretumab in patients with relapsed hematologic malignancies. J. Nuclear Med. 53(6):922–927. CrossRefGoogle Scholar
  41. 41.
    Poli GL, Bianchi C, Virotta G et al (2013) Radretumab radioimmunotherapy in patients with brain metastasis: a 124I-L19SIP dosimetric PET study. Cancer Immunol Res 1(2):134–143. CrossRefPubMedGoogle Scholar
  42. 42.
    Halin C, Rondini S, Nilsson F, Berndt A, Kosmehl H, Zardi L, Neri D (2002) Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat Biotechnol 20(3):264–269. CrossRefPubMedGoogle Scholar
  43. 43.
    Rodig SJ, Gusenleitner D, Jackson DG et al (2018) MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci Transl Med. CrossRefPubMedGoogle Scholar
  44. 44.
    Schliemann C, Gutbrodt KL, Kerkhoff A et al (2015) Targeting interleukin-2 to the bone marrow stroma for therapy of acute myeloid leukemia relapsing after allogeneic hematopoietic stem cell transplantation. Cancer Immunol Res 3(5):547–556. CrossRefPubMedGoogle Scholar
  45. 45.
    Murphy K, Weaver C (2017) Janeway's immunobiology, 9th edn. Garland Science, Taylor & Francis Group, LLC, New York, p 823Google Scholar
  46. 46.
    Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Patel SP, Milton D, Milhem MM et al (2016) Sequential administration of high-dose interleukin-2 and ipilimumab in patients with metastatic melanoma. J Clin Oncol 34(15_suppl):e21041–e21041. CrossRefGoogle Scholar
  48. 48.
    Klein C, Waldhauer I, Nicolini VG et al (2017) Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. Oncoimmunology 6(3):e1277306. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hutmacher C, Gonzalo Nunez N, Liuzzi AR, Becher B, Neri D (2019) Targeted DELIVERY of IL2 to the tumor stroma potentiates the action of immune checkpoint inhibitors by preferential activation of NK and CD8(+) T cells. Cancer Immunol Res 7(4):572–583. CrossRefPubMedGoogle Scholar
  50. 50.
    De Luca R, Neri D (2018) Potentiation of PD-L1 blockade with a potency-matched dual cytokine-antibody fusion protein leads to cancer eradication in BALB/c-derived tumors but not in other mouse strains. Cancer Immunol Immunother 67(9):1381–1391. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Castellani P, Viale G, Dorcaratto A, Nicolo G, Kaczmarek J, Querze G, Zardi L (1994) The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int J Cancer 59(5):612–618CrossRefPubMedGoogle Scholar
  52. 52.
    Schliemann C, Wiedmer A, Pedretti M, Szczepanowski M, Klapper W, Neri D (2009) Three clinical-stage tumor targeting antibodies reveal differential expression of oncofetal fibronectin and tenascin-C isoforms in human lymphoma. Leuk Res 33(12):1718–1722. CrossRefPubMedGoogle Scholar
  53. 53.
    Sauer S, Erba PA, Petrini M et al (2009) Expression of the oncofetal ED-B-containing fibronectin isoform in hematologic tumors enables ED-B-targeted 131I-L19SIP radioimmunotherapy in Hodgkin lymphoma patients. Blood 113(10):2265–2274. CrossRefPubMedGoogle Scholar
  54. 54.
    Kaspar M, Zardi L, Neri D (2006) Fibronectin as target for tumor therapy. Int J Cancer 118(6):1331–1339. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of DermatologyUniversity Medical CenterTübingenGermany
  2. 2.Division of Thoracic OncologyIEO, European Institute of Oncology IRCCSMilanItaly
  3. 3.Istituto Nazionale Tumori, IRCCS Fondazione PascaleNaplesItaly
  4. 4.Ospedali Riuniti AnconaAnconaItaly
  5. 5.Medical University of GrazGrazAustria
  6. 6.University Hospital Schleswig-Holstein (UKSK)KielGermany
  7. 7.Azienda Ospedaliero-Universitaria PisanaPisaItaly
  8. 8.Azienda Ospedaliero-Universitaria SeneseSienaItaly
  9. 9.University Hospital Zurich and University ZurichZurichSwitzerland
  10. 10.CharitéBerlinGermany
  11. 11.Philochem AGOtelfingenSwitzerland
  12. 12.Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
  13. 13.Sektion Dermatologische OnkologieUniversität Tübingen HautklinikTübingenGermany
  14. 14.Università di Modena e Reggio EmiliaModenaItaly
  15. 15.Translational Skin Cancer ResearchDeutsches Konsortium für Translationale Krebsforschung (DKTK) Partner Site EssenEssenGermany
  16. 16.Deutsches Krebsforschungszentrum (DKFZ)HeidelbergGermany
  17. 17.Dermatologikum BerlinBerlinGermany

Personalised recommendations