Cancer Immunology, Immunotherapy

, Volume 68, Issue 5, pp 799–812 | Cite as

A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer

  • Martin SebastianEmail author
  • Andreas Schröder
  • Birgit Scheel
  • Henoch S. Hong
  • Anke Muth
  • Lotta von Boehmer
  • Alfred Zippelius
  • Frank Mayer
  • Martin Reck
  • Djordje Atanackovic
  • Michael Thomas
  • Folker Schneller
  • Jan Stöhlmacher
  • Helga Bernhard
  • Andreas Gröschel
  • Thomas Lander
  • Jochen Probst
  • Tanja Strack
  • Volker Wiegand
  • Ulrike Gnad-Vogt
  • Karl-Josef Kallen
  • Ingmar Hoerr
  • Florian von der Muelbe
  • Mariola Fotin-Mleczek
  • Alexander Knuth
  • Sven D. Koch
Clinical Trial Report


CV9201 is an RNActive®-based cancer immunotherapy encoding five non-small cell lung cancer-antigens: New York esophageal squamous cell carcinoma-1, melanoma antigen family C1/C2, survivin, and trophoblast glycoprotein. In a phase I/IIa dose-escalation trial, 46 patients with locally advanced (n = 7) or metastatic (n = 39) NSCLC and at least stable disease after first-line treatment received five intradermal CV9201 injections (400–1600 µg of mRNA). The primary objective of the trial was to assess safety. Secondary objectives included assessment of antibody and ex vivo T cell responses against the five antigens, and changes in immune cell populations. All CV9201 dose levels were well-tolerated and the recommended dose for phase IIa was 1600 µg. Most AEs were mild-to-moderate injection site reactions and flu-like symptoms. Three (7%) patients had grade 3 related AEs. No related grade 4/5 or related serious AEs occurred. In phase IIa, antigen-specific immune responses against ≥ 1 antigen were detected in 63% of evaluable patients after treatment. The frequency of activated IgD+CD38hi B cells increased > twofold in 18/30 (60%) evaluable patients. 9/29 (31%) evaluable patients in phase IIa had stable disease and 20/29 (69%) had progressive disease. Median progression-free and overall survival were 5.0 months (95% CI 1.8–6.3) and 10.8 months (8.1–16.7) from first administration, respectively. Two- and 3-year survival rates were 26.7% and 20.7%, respectively. CV9201 was well-tolerated and immune responses could be detected after treatment supporting further clinical investigation.


Active cancer immunotherapy mRNA Non-small cell lung cancer Immunomonitoring Clinical trial CV9201 



Antinuclear antibody


Dose-limiting toxicity


Lipid nanoparticles


Melanoma antigen family C1/C2


National Cancer Institute Common Terminology Criteria for Adverse Events


New York esophageal squamous cell carcinoma-1


Recommended phase II dose


Thyroid stimulating hormone


Trophoblast glycoprotein



We thank all patients, staff, and investigators of the participating hospitals. We thank Jamie Ashman of Prism Ideas for Editorial support in the preparation of this manuscript and Helen Dietrich, Simone Eppler and Kathrin Hoch for providing technical support for the study including sample preparation and logistics, and immunomonitoring. Furthermore, we thank Thomas Dörner and Thomas Woelfel for scientific advice, Gerd Rippin for statistical advice, and Eray Goekkurt for medical support.

Author contributions

MS, BS, JP, TL, UG-V, K-JK, IH, and MF-M conceived, designed and supervised the study. MS, LB, AZ, FM, MR, DA, MT, FS, JS, HB, AG, and AK recruited patients and provided clinical samples. AS, BS, AM, HSH, TS, VW, FM and SDK acquired and analyzed the data. AS, BS, AM, HSH, and SDK drafted the manuscript. All authors read and approved the final version of the paper.


This study, and editorial support for the preparation of this manuscript, were funded by CureVac AG. The sponsor was involved in study design, data collection, analysis, and interpretation, writing of the article, and in the decision to submit the article for publication.

Compliance with ethical standards

Conflict of interest

Martin Sebastian reports personal fees from Lilly and Roche during the conduct of the study, and personal fees from Boehringer-Ingelheim, Pfizer, Astra-Zeneca, Bristol-Myers Squibb (BMS), Merck Sharp & Dohme (MSD), and Novartis, outside the submitted work. Alfred Zippelius reports grants from Roche, Actelion, Piqur, Secarna, and Beyondsprings, and personal fees from BMS, MSD, and NBE Therapeutics outside the submitted work. Martin Reck reports personal fees from Roche, Lilly, Boehringer-Ingelheim, BMS, AstraZeneca, MSD, Novartis, Pfizer, and Celgene, outside the submitted work. Alexander Knuth reports a former scientific advisory role for CureVac AG and is co-inventor on multiple patents of Ludwig Institute for Cancer Research (LICR) related to NY-ESO-1 and MAGE, partly licensed to multiple companies including CureVac AG. Birgit Scheel, Anke Muth, Tanja Strack, Volker Wiegand, Ulrike Gnad-Vogt, Ingmar Hoerr, Florian von der Muelbe and Mariola Fotin-Mleczek are employees of CureVac AG. Thomas Lander, Andreas Schröder, Henoch S. Hong, Jochen Probst, Karl-Josef Kallen and Sven D. Koch were employees of CureVac GmbH/AG. Thomas Lander was a clinical consultant to CureVac GmbH until 2012. Thomas Lander, Jochen Probst, and Ingmar Hoerr jointly hold a patent related to the use of mRNA vaccines for treating lung cancer (WO2009/046974) filed in several jurisdictions (issued in some and pending in others). Ulrike Gnad-Vogt, Karl-Josef Kallen, and Mariola Fotin-Mleczek jointly hold a patent related to the use of mRNA vaccines for treating lung cancer (WO2015/024666) filed in several jurisdictions (still pending). All other authors declare no conflicts of interest.

Ethical approval and ethical standards

The protocol was approved by the regulatory authorities, a central ethics committee for the 12 participating centers in Germany (Ethikkommission bei der Landesärztekammer Hessen, Frankfurt am Main, Germany - Approval Number: FF 2/2009) and two local ethics committees for the two participating centers in Switzerland (Spezial-Unterkommission (SPUK) Innere Medizin, Kantonale Ethikkommission UniversitätsSpital Zürich, Zürich, Switzerland - Approval Number: EK-1639, and Ethikkommission beider Basel (EKBB), Universitätsspital Basel, Basel, Switzerland - Approval Number: 20/09). The study was conducted in accordance with Good Clinical Practice guidelines (EudraCT No.: 2008-007785-39). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent on being treated as well as on the use of generated data for research purposes and publication was obtained from all individual participants included in the study.

Supplementary material

262_2019_2315_MOESM1_ESM.pdf (824 kb)
Supplementary material 1 (PDF 823 KB)


  1. 1.
    Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Aren FO, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135CrossRefGoogle Scholar
  2. 2.
    Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA, Powderly JD, Heist RS, Carvajal RD, Jackman DM, Sequist LV, Smith DC, Leming P, Carbone DP, Pinder-Schenck MC, Topalian SL, Hodi FS, Sosman JA, Sznol M, McDermott DF, Pardoll DM, Sankar V, Ahlers CM, Salvati M, Wigginton JM, Hellmann MD, Kollia GD, Gupta AK, Brahmer JR (2015) Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol 33:2004–2012CrossRefGoogle Scholar
  3. 3.
    Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhaufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crino L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf FF, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639CrossRefGoogle Scholar
  4. 4.
    Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR, Ready NE, Gerber DE, Chow LQ, Juergens RA, Shepherd FA, Laurie SA, Geese WJ, Agrawal S, Young TC, Li X, Antonia SJ (2017) Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol 18:31–41CrossRefGoogle Scholar
  5. 5.
    Weide B, Carralot JP, Reese A, Scheel B, Eigentler TK, Hoerr I, Rammensee HG, Garbe C, Pascolo S (2008) Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J Immunother 31:180–188CrossRefGoogle Scholar
  6. 6.
    Rittig SM, Haentschel M, Weimer KJ, Heine A, Muller MR, Brugger W, Horger MS, Maksimovic O, Stenzl A, Hoerr I, Rammensee HG, Holderried TAW, Kanz L, Pascolo S, Brossart P (2011) Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther 19:990–999CrossRefGoogle Scholar
  7. 7.
    Rittig SM, Haentschel M, Weimer KJ, Heine A, Muller MR, Brugger W, Horger MS, Maksimovic O, Stenzl A, Hoerr I, Rammensee HG, Holderried TA, Kanz L, Pascolo S, Brossart P (2016) Long-term survival correlates with immunological responses in renal cell carcinoma patients treated with mRNA-based immunotherapy. Oncoimmunology 5:e1108511CrossRefGoogle Scholar
  8. 8.
    Hoerr I, Obst R, Rammensee HG, Jung G (2000) In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 30:1–7CrossRefGoogle Scholar
  9. 9.
    Fotin-Mleczek M, Duchardt KM, Lorenz C, Pfeiffer R, Ojkic-Zrna S, Probst J, Kallen KJ (2011) Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother 34:1–15CrossRefGoogle Scholar
  10. 10.
    Scheel B, Aulwurm S, Probst J, Stitz L, Hoerr I, Rammensee HG, Weller M, Pascolo S (2006) Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA. Eur J Immunol 36:2807–2816CrossRefGoogle Scholar
  11. 11.
    Fotin-Mleczek M, Zanzinger K, Heidenreich R, Lorenz C, Thess A, Duchardt KM, Kallen KJ (2012) Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J Gene Med 14:428–439CrossRefGoogle Scholar
  12. 12.
    Weide B, Pascolo S, Scheel B, Derhovanessian E, Pflugfelder A, Eigentler TK, Pawelec G, Hoerr I, Rammensee HG, Garbe C (2009) Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother 32:498–507CrossRefGoogle Scholar
  13. 13.
    Kübler H, Scheel B, Gnad-Vogt U, Miller K, Schultze-Seemann W, Vom DF, Parmiani G, Hampel C, Wedel S, Trojan L, Jocham D, Maurer T, Rippin G, Fotin-Mleczek M, von der MF, Probst, Hoerr J, Kallen I, Lander KJ, Stenzl T A (2015) Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J Immunother Cancer 3:26CrossRefGoogle Scholar
  14. 14.
    Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ (1997) A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 94:1914–1918CrossRefGoogle Scholar
  15. 15.
    Gure AO, Stockert E, Arden KC, Boyer AD, Viars CS, Scanlan MJ, Old LJ, Chen YT (2000) CT10: a new cancer-testis (CT) antigen homologous to CT7 and the MAGE family, identified by representational-difference analysis. Int J Cancer 85:726–732CrossRefGoogle Scholar
  16. 16.
    Krishnadas DK, Bai F, Lucas KG (2013) Cancer testis antigen and immunotherapy. ImmunoTargets Therapy 2013:2:11–19CrossRefGoogle Scholar
  17. 17.
    Gjerstorff MF, Pohl M, Olsen KE, Ditzel HJ (2013) Analysis of GAGE, NY-ESO-1 and SP17 cancer/testis antigen expression in early stage non-small cell lung carcinoma. BMC Cancer 13:466CrossRefGoogle Scholar
  18. 18.
    Gure AO, Chua R, Williamson B, Gonen M, Ferrera CA, Gnjatic S, Ritter G, Simpson AJ, Chen YT, Old LJ, Altorki NK (2005) Cancer-testis genes are coordinately expressed and are markers of poor outcome in non-small cell lung cancer. Clin Cancer Res 11:8055–8062CrossRefGoogle Scholar
  19. 19.
    Ohue Y, Wada H, Oka M, Nakayama E (2014) Antibody response to cancer/testis (CT) antigens: a prognostic marker in cancer patients. Oncoimmunology 3:e970032CrossRefGoogle Scholar
  20. 20.
    Weide B, Martens A, Zelba H, Stutz C, Derhovanessian E, Di Giacomo AM, Maio M, Sucker A, Schilling B, Schadendorf D, Buttner P, Garbe C, Pawelec G (2014) Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T cells. Clin Cancer Res 20:1601–1609CrossRefGoogle Scholar
  21. 21.
    Altieri DC (2015) Survivin—the inconvenient IAP. Semin Cell Dev Biol 39:91–96CrossRefGoogle Scholar
  22. 22.
    Andersen MH, Pedersen LO, Becker JC, Straten PT (2001) Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res 61:869–872Google Scholar
  23. 23.
    Zhang LQ, Wang J, Jiang F, Xu L, Liu FY, Yin R (2012) Prognostic value of survivin in patients with non-small cell lung carcinoma: a systematic review with meta-analysis. PLoS One 7:e34100CrossRefGoogle Scholar
  24. 24.
    Damelin M, Geles KG, Follettie MT, Yuan P, Baxter M, Golas J, DiJoseph JF, Karnoub M, Huang S, Diesl V, Behrens C, Choe SE, Rios C, Gruzas J, Sridharan L, Dougher M, Kunz A, Hamann PR, Evans D, Armellino D, Khandke K, Marquette K, Tchistiakova L, Boghaert ER, Abraham RT, Wistuba II, Zhou BB (2011) Delineation of a cellular hierarchy in lung cancer reveals an oncofetal antigen expressed on tumor-initiating cells. Cancer Res 71:4236–4246CrossRefGoogle Scholar
  25. 25.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van GM, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216CrossRefGoogle Scholar
  26. 26.
    Janetzki S, Panageas KS, Ben-Porat L, Boyer J, Britten CM, Clay TM, Kalos M, Maecker HT, Romero P, Yuan J, Kast WM, Hoos A (2008) Results and harmonization guidelines from two large-scale international Elispot proficiency panels conducted by the Cancer Vaccine Consortium (CVC/SVI). Cancer Immunol Immunother 57:303–315CrossRefGoogle Scholar
  27. 27.
    Janetzki S, Britten CM (2012) The impact of harmonization on ELISPOT assay performance. Methods Mol Biol 792:25–36CrossRefGoogle Scholar
  28. 28.
    Mander A, Gouttefangeas C, Ottensmeier C, Welters MJ, Low L, van der Burg SH, Britten CM (2010) Serum is not required for ex vivo IFN-gamma ELISPOT: a collaborative study of different protocols from the European CIMT Immunoguiding Program. Cancer Immunol Immunother 59:619–627CrossRefGoogle Scholar
  29. 29.
    Hong HS, Koch SD, Scheel B, Gnad-Vogt U, Schroder A, Kallen KJ, Wiegand V, Backert L, Kohlbacher O, Hoerr I, Fotin-Mleczek M, Billingsley JM (2016) Distinct transcriptional changes in non-small cell lung cancer patients associated with multi-antigenic RNActive(R) CV9201 immunotherapy. Oncoimmunology 5:e1249560CrossRefGoogle Scholar
  30. 30.
    Hazama S, Nakamura Y, Takenouchi H, Suzuki N, Tsunedomi R, Inoue Y, Tokuhisa Y, Iizuka N, Yoshino S, Takeda K, Shinozaki H, Kamiya A, Furukawa H, Oka M (2014) A phase I study of combination vaccine treatment of five therapeutic epitope-peptides for metastatic colorectal cancer; safety, immunological response, and clinical outcome. J Transl Med 12:63CrossRefGoogle Scholar
  31. 31.
    Aruga A, Takeshita N, Kotera Y, Okuyama R, Matsushita N, Ohta T, Takeda K, Yamamoto M (2013) Long-term vaccination with multiple peptides derived from cancer-testis antigens can maintain a specific T-cell response and achieve disease stability in advanced biliary tract cancer. Clin Cancer Res 19:2224–2231CrossRefGoogle Scholar
  32. 32.
    Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, Staehler M, Brugger W, Dietrich PY, Mendrzyk R, Hilf N, Schoor O, Fritsche J, Mahr A, Maurer D, Vass V, Trautwein C, Lewandrowski P, Flohr C, Pohla H, Stanczak JJ, Bronte V, Mandruzzato S, Biedermann T, Pawelec G, Derhovanessian E, Yamagishi H, Miki T, Hongo F, Takaha N, Hirakawa K, Tanaka H, Stevanovic S, Frisch J, Mayer-Mokler A, Kirner A, Rammensee HG, Reinhardt C, Singh-Jasuja H (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18:1254–1261CrossRefGoogle Scholar
  33. 33.
    Zandberg DP, Rollins S, Goloubeva O, Morales RE, Tan M, Taylor R, Wolf JS, Schumaker LM, Cullen KJ, Zimrin A, Ord R, Lubek JE, Suntharalingam M, Papadimitriou JC, Mann D, Strome SE, Edelman MJ (2015) A phase I dose escalation trial of MAGE-A3- and HPV16-specific peptide immunomodulatory vaccines in patients with recurrent/metastatic (RM) squamous cell carcinoma of the head and neck (SCCHN). Cancer Immunol Immunother 64:367–379CrossRefGoogle Scholar
  34. 34.
    Nagorsen D, Thiel E (2006) Clinical and immunologic responses to active specific cancer vaccines in human colorectal cancer. Clin Cancer Res 12:3064–3069CrossRefGoogle Scholar
  35. 35.
    Blaes F, Klotz M, Huwer H, Straub U, Kalweit G, Schimrigk K, Schafers HJ (2000) Antineural and antinuclear autoantibodies are of prognostic relevance in non-small cell lung cancer. Ann Thorac Surg 69:254–258CrossRefGoogle Scholar
  36. 36.
    Gerber DE, Schiller JH (2013) Maintenance chemotherapy for advanced non-small-cell lung cancer: new life for an old idea. J Clin Oncol 31:1009–1020CrossRefGoogle Scholar
  37. 37.
    Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang XY (2013) Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res 119:421–475CrossRefGoogle Scholar
  38. 38.
    Butts C, Socinski MA, Mitchell PL, Thatcher N, Havel L, Krzakowski M, Nawrocki S, Ciuleanu TE, Bosquee L, Trigo JM, Spira A, Tremblay L, Nyman J, Ramlau R, Wickart-Johansson G, Ellis P, Gladkov O, Pereira JR, Eberhardt WE, Helwig C, Schroder A, Shepherd FA (2014) Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol 15:59–68CrossRefGoogle Scholar
  39. 39.
    Vansteenkiste JF, Cho BC, Vanakesa T, De PT, Zielinski M, Kim MS, Jassem J, Yoshimura M, Dahabreh J, Nakayama H, Havel L, Kondo H, Mitsudomi T, Zarogoulidis K, Gladkov OA, Udud K, Tada H, Hoffman H, Bugge A, Taylor P, Gonzalez EE, Liao ML, He J, Pujol JL, Louahed J, Debois M, Brichard V, Debruyne C, Therasse P, Altorki N (2016) Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 17:822–835CrossRefGoogle Scholar
  40. 40.
    Giaccone G, Bazhenova LA, Nemunaitis J, Tan M, Juhasz E, Ramlau R, van den Heuvel MM, Lal R, Kloecker GH, Eaton KD, Chu Q, Dunlop DJ, Jain M, Garon EB, Davis CS, Carrier E, Moses SC, Shawler DL, Fakhrai H (2015) A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer. Eur J Cancer 51:2321–2329CrossRefGoogle Scholar
  41. 41.
    Sebastian M, Papachristofilou A, Weiss C, Fruh M, Cathomas R, Hilbe W, Wehler T, Rippin G, Koch SD, Scheel B, Fotin-Mleczek M, Heidenreich R, Kallen KJ, Gnad-Vogt U, Zippelius A (2014) Phase Ib study evaluating a self-adjuvanted mRNA cancer vaccine (RNActive(R)) combined with local radiation as consolidation and maintenance treatment for patients with stage IV non-small cell lung cancer. BMC Cancer 14:748CrossRefGoogle Scholar
  42. 42.
    Bohnhorst JO, Bjorgan MB, Thoen JE, Natvig JB, Thompson KM (2001) Bm1-Bm5 classification of peripheral blood B cells reveals circulating germinal center founder cells in healthy individuals and disturbance in the B cell subpopulations in patients with primary Sjogren’s syndrome. J Immunol 167:3610–3618CrossRefGoogle Scholar
  43. 43.
    Soni C, Wong EB, Domeier PP, Khan TN, Satoh T, Akira S, Rahman ZS (2014) B cell-intrinsic TLR7 signaling is essential for the development of spontaneous germinal centers. J Immunol 193:4400–4414CrossRefGoogle Scholar
  44. 44.
    Palanichamy A, Barnard J, Zheng B, Owen T, Quach T, Wei C, Looney RJ, Sanz I, Anolik JH (2009) Novel human transitional B cell populations revealed by B cell depletion therapy. J Immunol 182:5982–5993CrossRefGoogle Scholar
  45. 45.
    Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, Mauri C (2010) CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 32:129–140CrossRefGoogle Scholar
  46. 46.
    Kawano K, Efferson CL, Peoples GE, Carter D, Tsuda N, Murray JL, Ioannides CG (2005) Sensitivity of undifferentiated, high-TCR density CD8+ cells to methylene groups appended to tumor antigen determines their differentiation or death. Cancer Res 65:2930–2937CrossRefGoogle Scholar
  47. 47.
    Alberer M, Gnad-Vogt U, Hong HS, Mehr KT, Backert L, Finak G, Gottardo R, Bica MA, Garofano A, Koch SD, Fotin-Mleczek M, Hoerr I, Clemens R von SF (2017) Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 390:1511–1520CrossRefGoogle Scholar
  48. 48.
    Lutz J, Lazzaro S, Habbeddine M, Schmidt KE, Baumhof P, Mui BL, Tam YK, Madden TD, Hope MJ, Heidenreich R, Fotin-Mleczek M (2017) Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. NPJ Vaccines 2:29CrossRefGoogle Scholar
  49. 49.
    Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, Meng M, Fritz D, Vascotto F, Hefesha H, Grunwitz C, Vormehr M, Husemann Y, Selmi A, Kuhn AN, Buck J, Derhovanessian E, Rae R, Attig S, Diekmann J, Jabulowsky RA, Heesch S, Hassel J, Langguth P, Grabbe S, Huber C, Tureci O, Sahin U (2016) Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534:396–401CrossRefGoogle Scholar
  50. 50.
    Bahl K, Senn JJ, Yuzhakov O, Bulychev A, Brito LA, Hassett KJ, Laska ME, Smith M, Almarsson O, Thompson J, Ribeiro AM, Watson M, Zaks T, Ciaramella G (2017) Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol Ther 25:1316–1327CrossRefGoogle Scholar
  51. 51.
    Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, Bukur V, Tadmor AD, Luxemburger U, Schrors B, Omokoko T, Vormehr M, Albrecht C, Paruzynski A, Kuhn AN, Buck J, Heesch S, Schreeb KH, Muller F, Ortseifer I, Vogler I, Godehardt E, Attig S, Rae R, Breitkreuz A, Tolliver C, Suchan M, Martic G, Hohberger A, Sorn P, Diekmann J, Ciesla J, Waksmann O, Bruck AK, Witt M, Zillgen M, Rothermel A, Kasemann B, Langer D, Bolte S, Diken M, Kreiter S, Nemecek R, Gebhardt C, Grabbe S, Holler C, Utikal J, Huber C, Loquai C, Tureci O (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:222–226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Martin Sebastian
    • 1
    • 13
    Email author
  • Andreas Schröder
    • 2
    • 14
  • Birgit Scheel
    • 2
  • Henoch S. Hong
    • 2
    • 14
  • Anke Muth
    • 2
  • Lotta von Boehmer
    • 3
    • 15
  • Alfred Zippelius
    • 4
  • Frank Mayer
    • 5
    • 16
  • Martin Reck
    • 6
  • Djordje Atanackovic
    • 7
    • 17
  • Michael Thomas
    • 8
  • Folker Schneller
    • 9
  • Jan Stöhlmacher
    • 10
    • 18
  • Helga Bernhard
    • 11
  • Andreas Gröschel
    • 12
    • 19
  • Thomas Lander
    • 2
  • Jochen Probst
    • 2
    • 20
  • Tanja Strack
    • 2
  • Volker Wiegand
    • 2
  • Ulrike Gnad-Vogt
    • 2
  • Karl-Josef Kallen
    • 2
    • 21
  • Ingmar Hoerr
    • 2
  • Florian von der Muelbe
    • 2
  • Mariola Fotin-Mleczek
    • 2
  • Alexander Knuth
    • 3
    • 22
  • Sven D. Koch
    • 2
    • 23
  1. 1.University Medical Center of the Johannes Gutenberg-UniversityMainzGermany
  2. 2.CureVac AGTübingenGermany
  3. 3.Klinik für OnkologieUniversitätsSpital ZürichZurichSwitzerland
  4. 4.Klinik für OnkologieUniversitätsspital BaselBaselSwitzerland
  5. 5.Universitätsklinikum TübingenTübingenGermany
  6. 6.LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL)GrosshansdorfGermany
  7. 7.Universitätsklinikum Hamburg-EppendorfHamburgGermany
  8. 8.Internistische Onkologie der Thoraxtumoren, Thoraxklinik im Universitätsklinikum Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL)HeidelbergGermany
  9. 9.Klinikum rechts der Isar der TUMMunichGermany
  10. 10.Universitätsklinikum Carl Gustav CarusDresdenGermany
  11. 11.Klinikum Darmstadt GmbHDarmstadtGermany
  12. 12.Universitätsklinikum AachenAachenGermany
  13. 13.Medizinische Klinik II, Hämatologie/Onkologie, Rheumatologie, InfektiologieHIV Klinikum der J.W. Goethe-Universität FrankfurtFrankfurt am MainGermany
  14. 14.Merck KGaADarmstadtGermany
  15. 15.Institute for Immunity, Transplantation and InfectionStanford University School of MedicineStanfordUSA
  16. 16.Praxis und TagesklinikFriedrichshafenGermany
  17. 17.Huntsman Cancer Institute, University of UtahSalt Lake CityUSA
  18. 18.Tumorgenetik BonnBonnGermany
  19. 19.ClemenshospitalMünsterGermany
  20. 20.Sandoz GmbHLangkampfenAustria
  21. 21.Kallen Medical Innovation GmbHFrechenGermany
  22. 22.National Center for Cancer Care and Research NCCCRHamad Medical CorporationDohaQatar
  23. 23.Sandoz Biopharmaceuticals, Department of Clinical BioanalyticsOberhachingGermany

Personalised recommendations