Advertisement

Cancer Immunology, Immunotherapy

, Volume 68, Issue 1, pp 1–9 | Cite as

Addressing current challenges and future directions in immuno-oncology: expert perspectives from the 2017 NIBIT Foundation Think Tank, Siena, Italy

  • Michele MaioEmail author
  • George Coukos
  • Soldano Ferrone
  • Bernard A. Fox
  • Wolf H. Fridman
  • Patrick L. Garcia
  • Michael Lahn
  • Olivier Provendier
  • Vincenzo Russo
  • Dominik Rüttinger
  • Aiman Shalabi
  • Zlatko Trajanoski
  • Jean Viallet
  • Jedd D. Wolchok
  • Ramy Ibrahim
Opinion Paper

Abstract

A collaborative think tank involving panellists from immuno-oncology networks, clinical/translational investigators and the pharmaceutical industry was held in Siena, Italy, in October 2017 to discuss the evolving immune-oncology landscape, identify selected key challenges, and provide a perspective on the next steps required in the translation of current research and knowledge to clinical reality. While there is a trend of combining new agents (e.g., co-stimulator agonists) with a PD-1/PD-L1 treatment backbone, use of alternative combination therapy approaches should also be considered. While the rapid evolution in systems biology provides a deeper understanding of tumor and tumor microenvironment heterogeneity, there remains the need to identify and define genuinely predictive biomarkers to guide treatment and patient selection. Cross-specialty and cross-sector collaboration, along with a broader collective data-sharing approach are key to optimizing immuno-oncology therapy in clinical practice. Continued support of younger research-clinicians is essential for future success in clinical, translational and basic science investigations.

Keywords

Immunotherapy PD-1 PD-L1 CTLA-4 OX-40 Biomarkers 

Abbreviations

ALC

Absolute lymphocyte count

AMC

Absolute monocyte count

ANC

Absolute neutrophil count

GITR

Glucocorticoid-induced tumor necrosis factor receptor

Hi-TIDe

Human integrated tumor immunology discovery engine

MEK

Mitogen-activated protein kinase kinase

NIBIT

“Network Italiano per la Bioterapia dei Tumori” (Italian Network for Tumor Biotherapy)

BRAF

Proto-oncogene B-Raf

SLiPs

Short-lived proteins

SITC

Society for Immunotherapy of Cancer

TIL

Tumor-infiltrating lymphocyte

TME

Tumor microenvironment

Notes

Acknowledgements

The panel was organized with support of the NIBIT Foundation. The authors wish to thank Michael Smith (IntraMed, Milan) and Iain O’Neill (Medical Writer) for providing medical writing and editorial support.

Author contributions

All authors participated in the panel discussions. MM and RI conceived the review together with key participants. The manuscript was developed from panel notes with input from MM, ML, BAF, GC, JW and RI. All authors critically contributed to the final manuscript draft and approved the final version.

Funding

The panel and the development of this paper were supported by the NIBIT Foundation. The contents and topics of the panel discussions and of this paper were not influenced by the sponsor.

Compliance with ethical standards

Conflict of interest

Michel Lahn was an employee of Incyte Biosciences International Sarl, Geneva, Switzerland, at the time of this panel and holds stocks of Incyte. Dominik Reuttinger is an employee of Roche Pharmaceuticals. Patrick L Garcia is an employee of Merck KGaA. Olivier Provendier is an employee of Laboratoires Pierre Fabre. Michele Maio is a consultant/advisory board member for Bristol-Myers Squibb, Incyte, Merck Sharp & Dohme Oncology, Roche, Astex Pharmaceuticals, Amgen, AstraZeneca and Merck Serono. Ramy Ibrahim is an advisory board member for Harpoon, Arcus, Immunovaccine and ImaginAB. Aiman Shalabi was a consultant at the Cancer Research Institute, New York, NY, USA, at the time of this panel. All other authors declare that they have no conflict of interest.

References

  1. 1.
    Maio M, Fonsatti E (2014) The Italian network for tumor biotherapy (NIBIT): past, present and future goals. Rev Health Care 5(1):3–6CrossRefGoogle Scholar
  2. 2.
    Russo V, Amadori A, Bregni M, Calabro L, Colombo MP, Di Nicola M, Ferrucci PF, Proietti E, Maio M, Bellone M (2017) Goals and objectives of the Italian network for tumor biotherapy (NIBIT). Cytokine Growth Factor Rev 36:1–3.  https://doi.org/10.1016/j.cytogfr.2017.06.004 CrossRefPubMedGoogle Scholar
  3. 3.
    Maio M, Lofiego MF, Fazio C, Cannito S, Chiarucci C, Giacobini G, Valente M, Tunici P, Covre A, Russo V (2018) Fifteenth meeting of the network Italiano per la Bioterapia dei Tumori (NIBIT) on cancer bio-immunotherapy, Siena, Italy, October 5–7, 2017. Cancer Immunol Immunother.  https://doi.org/10.1007/s00262-018-2222-0 CrossRefPubMedGoogle Scholar
  4. 4.
    Hansen AR, Infante JR, McArthur G, Gordon MS, Lesokhin AM, Stayner A-L, Bauer TM, Sandhu S, Tsai F, Snyder A, Subramaniam DS, Kim J, Stefanich E, Li C-C, Ruppel J, Anderson M, Gilbert H, McCall B, Huseni MA, Rhee I, Pishvaian M (2016) Abstract CT097: a first-in-human phase I dose escalation study of the OX40 agonist MOXR0916 in patients with refractory solid tumors. Cancer Res 76(14 Supplement):CT097–CT097.  https://doi.org/10.1158/1538-7445.am2016-ct097 CrossRefGoogle Scholar
  5. 5.
    Angevin E, Bauer TM, Ellis CE, Gan H, Hall R, Hansen A, Hoos A, Jewell RC, Katz J, Martin-Liberal J, Maio M, Mayes PA, Mazumdar J, Millward M, Rischin D, Schellens JH, Yadavilli S, Zhou H (2017) Abstract CT039: INDUCE-1: a phase I open-label study of GSK3359609, an ICOS agonist antibody, administered alone and in combination with pembrolizumab in patients with selected, advanced solid tumors. Cancer Res 77(13 Supplement):CT039–CT039.  https://doi.org/10.1158/1538-7445.am2017-ct039 CrossRefGoogle Scholar
  6. 6.
    Sullivan RJ, Gonzalez R, Lewis KD, Hamid O, Infante JR, Patel MR, Hodi FS, Wallin J, Pitcher B, Cha E, Roberts L, Ballinger M, Hwu P (2017) Atezolizumab (A) + cobimetinib (C) + vemurafenib (V) in BRAFV600-mutant metastatic melanoma (mel): updated safety and clinical activity. J Clin Oncol 35(15_suppl):3063–3063.  https://doi.org/10.1200/JCO.2017.35.15_suppl.3063 CrossRefGoogle Scholar
  7. 7.
    McDermott DF, Atkins MB, Motzer RJ, Rini BI, Escudier BJ, Fong L, Joseph RW, Pal SK, Sznol M, Hainsworth JD, Stadler WM, Hutson TE, Ravaud A, Bracarda S, Suarez C, Choueiri TK, Choi Y, Huseni MA, Fine GD, Powles T (2017) A phase II study of atezolizumab (atezo) with or without bevacizumab (bev) versus sunitinib (sun) in untreated metastatic renal cell carcinoma (mRCC) patients (pts). J Clin Oncol 35(6_suppl):431–431.  https://doi.org/10.1200/JCO.2017.35.6_suppl.431 CrossRefGoogle Scholar
  8. 8.
    Motzer RJ, Powles T, Atkins MB, Escudier B, McDermott DF, Suarez C, Bracarda S, Stadler WM, Donskov F, Lee J-L, Hawkins RE, Ravaud A, Alekseev BY, Staehler MD, Uemura M, Donaldson F, Li S, Huseni MA, Schiff C, Rini BI (2018) IMmotion151: a randomized phase III study of atezolizumab plus bevacizumab vs sunitinib in untreated metastatic renal cell carcinoma (mRCC). J Clin Oncol 36(6_suppl):578–578.  https://doi.org/10.1200/JCO.2018.36.6_suppl.578 CrossRefGoogle Scholar
  9. 9.
    Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A (2016) Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer 52:50–66.  https://doi.org/10.1016/j.ejca.2015.08.021 CrossRefPubMedGoogle Scholar
  10. 10.
    Curti BD, Kovacsovics-Bankowski M, Morris N, Walker E, Chisholm L, Floyd K, Walker J, Gonzalez I, Meeuwsen T, Fox BA, Moudgil T, Miller W, Haley D, Coffey T, Fisher B, Delanty-Miller L, Rymarchyk N, Kelly T, Crocenzi T, Bernstein E, Sanborn R, Urba WJ, Weinberg AD (2013) OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res 73(24):7189–7198.  https://doi.org/10.1158/0008-5472.CAN-12-4174 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dempke WCM, Fenchel K, Uciechowski P, Dale SP (2017) Second- and third-generation drugs for immuno-oncology treatment-the more the better? Eur J Cancer 74:55–72.  https://doi.org/10.1016/j.ejca.2017.01.001 CrossRefPubMedGoogle Scholar
  12. 12.
    Zappasodi R, Li Y, Abu-Akeel M, Qi J, Wong P, Sirard C, Postow M, Schaer DA, Newman W, Koon H, Velcheti V, Callahan MK, Wolchok JD, Merghoub T (2017) Abstract CT018: Intratumor and peripheral Treg modulation as a pharmacodynamic biomarker of the GITR agonist antibody TRX-518 in the first in-human trial. Cancer Res 77(13 Supplement):CT018–CT018.  https://doi.org/10.1158/1538-7445.am2017-ct018 CrossRefGoogle Scholar
  13. 13.
    Messenheimer DJ, Jensen SM, Afentoulis ME, Wegmann KW, Feng Z, Friedman DJ, Gough MJ, Urba WJ, Fox BA (2017) Timing of PD-1 blockade is critical to effective combination immunotherapy with anti-OX40. Clin Cancer Res 23(20):6165–6177.  https://doi.org/10.1158/1078-0432.CCR-16-2677 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Shrimali RK, Ahmad S, Verma V, Zeng P, Ananth S, Gaur P, Gittelman RM, Yusko E, Sanders C, Robins H, Hammond SA, Janik JE, Mkrtichyan M, Gupta S, Khleif SN (2017) Concurrent PD-1 blockade negates the effects of OX40 agonist antibody in combination immunotherapy through inducing T-cell apoptosis. Cancer Immunol Res 5(9):755–766.  https://doi.org/10.1158/2326-6066.CIR-17-0292 CrossRefPubMedGoogle Scholar
  15. 15.
    Tripathi SC, Peters HL, Taguchi A, Katayama H, Wang H, Momin A, Jolly MK, Celiktas M, Rodriguez-Canales J, Liu H, Behrens C, Wistuba II, Ben-Jacob E, Levine H, Molldrem JJ, Hanash SM, Ostrin EJ (2016) Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome. Proc Natl Acad Sci USA 113(11):E1555–E1564.  https://doi.org/10.1073/pnas.1521812113 CrossRefPubMedGoogle Scholar
  16. 16.
    Hulett TW, Jensen SM, Wilmarth PA, Reddy AP, Ballesteros-Merino C, Afentoulis ME, Dubay C, David LL, Fox BA (2018) Coordinated responses to individual tumor antigens by IgG antibody and CD8+ T cells following cancer vaccination. J Immunother Cancer 6(1):27.  https://doi.org/10.1186/s40425-018-0331-0 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Persson N, Jansson B, Stuhr-Hansen N, Kovacs A, Welinder C, Danielsson L, Blixt O (2016) A combinatory antibody-antigen microarray assay for high-content screening of single-chain fragment variable clones from recombinant libraries. PLoS One 11(12):e0168761.  https://doi.org/10.1371/journal.pone.0168761 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Stuchly J, Kanderova V, Fiser K, Cerna D, Holm A, Wu W, Hrusak O, Lund-Johansen F, Kalina T (2012) An automated analysis of highly complex flow cytometry-based proteomic data. Cytometry A 81(2):120–129.  https://doi.org/10.1002/cyto.a.22011 CrossRefPubMedGoogle Scholar
  19. 19.
    Yuan J, Hegde PS, Clynes R, Foukas PG, Harari A, Kleen TO, Kvistborg P, Maccalli C, Maecker HT, Page DB, Robins H, Song W, Stack EC, Wang E, Whiteside TL, Zhao Y, Zwierzina H, Butterfield LH, Fox BA (2016) Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother Cancer 4:3.  https://doi.org/10.1186/s40425-016-0107-3 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ascierto PA, Simeone E, Sznol M, Fu YX, Melero I (2010) Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin Oncol 37(5):508–516.  https://doi.org/10.1053/j.seminoncol.2010.09.008 CrossRefPubMedGoogle Scholar
  21. 21.
    Segal NH, Logan TF, Hodi FS, McDermott D, Melero I, Hamid O, Schmidt H, Robert C, Chiarion-Sileni V, Ascierto PA, Maio M, Urba WJ, Gangadhar TC, Suryawanshi S, Neely J, Jure-Kunkel M, Krishnan S, Kohrt H, Sznol M, Levy R (2017) Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin Cancer Res 23(8):1929–1936.  https://doi.org/10.1158/1078-0432.CCR-16-1272 CrossRefPubMedGoogle Scholar
  22. 22.
    Chester C, Sanmamed MF, Wang J, Melero I (2018) Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood 131(1):49–57.  https://doi.org/10.1182/blood-2017-06-741041 CrossRefPubMedGoogle Scholar
  23. 23.
    Emens LA, Bruno R, Rubin EH, Jaffee EM, McKee AE (2017) Report on the third FDA-AACR oncology dose-finding workshop. Cancer Immunol Res 5(12):1058–1061.  https://doi.org/10.1158/2326-6066.CIR-17-0590 CrossRefPubMedGoogle Scholar
  24. 24.
    Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731–2738CrossRefGoogle Scholar
  25. 25.
    Byrne AT, Alferez DG, Amant F, Annibali D, Arribas J, Biankin AV, Bruna A, Budinska E, Caldas C, Chang DK, Clarke RB, Clevers H, Coukos G, Dangles-Marie V, Eckhardt SG, Gonzalez-Suarez E, Hermans E, Hidalgo M, Jarzabek MA, de Jong S, Jonkers J, Kemper K, Lanfrancone L, Maelandsmo GM, Marangoni E, Marine JC, Medico E, Norum JH, Palmer HG, Peeper DS, Pelicci PG, Piris-Gimenez A, Roman-Roman S, Rueda OM, Seoane J, Serra V, Soucek L, Vanhecke D, Villanueva A, Vinolo E, Bertotti A, Trusolino L (2017) Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer 17(4):254–268.  https://doi.org/10.1038/nrc.2016.140 CrossRefPubMedGoogle Scholar
  26. 26.
    Rosenberg SA (2015) CCR 20th anniversary commentary: autologous T Cells-the ultimate personalized drug for the immunotherapy of human cancer. Clin Cancer Res 21(24):5409–5411.  https://doi.org/10.1158/1078-0432.CCR-14-3131 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213.  https://doi.org/10.1056/NEJMoa020177 CrossRefGoogle Scholar
  28. 28.
    Hwang WT, Adams SF, Tahirovic E, Hagemann IS, Coukos G (2012) Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol Oncol 124(2):192–198.  https://doi.org/10.1016/j.ygyno.2011.09.039 CrossRefPubMedGoogle Scholar
  29. 29.
    Chiang CL, Kandalaft LE, Tanyi J, Hagemann AR, Motz GT, Svoronos N, Montone K, Mantia-Smaldone GM, Smith L, Nisenbaum HL, Levine BL, Kalos M, Czerniecki BJ, Torigian DA, Powell DJ Jr, Mick R, Coukos G (2013) A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin Cancer Res 19(17):4801–4815.  https://doi.org/10.1158/1078-0432.CCR-13-1185 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zsiros E, Duttagupta P, Dangaj D, Li H, Frank R, Garrabrant T, Hagemann IS, Levine BL, June CH, Zhang L, Wang E, Marincola FM, Bedognetti D, Powell DJ Jr, Tanyi J, Feldman MD, Kandalaft LE, Coukos G (2015) The ovarian cancer chemokine landscape is conducive to homing of vaccine-primed and CD3/CD28-costimulated T cells prepared for adoptive therapy. Clin Cancer Res 21(12):2840–2850.  https://doi.org/10.1158/1078-0432.CCR-14-2777 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bassani-Sternberg M, Coukos G (2016) Mass spectrometry-based antigen discovery for cancer immunotherapy. Curr Opin Immunol 41:9–17.  https://doi.org/10.1016/j.coi.2016.04.005 CrossRefPubMedGoogle Scholar
  32. 32.
    Muller M, Gfeller D, Coukos G, Bassani-Sternberg M (2017) ‘Hotspots’ of antigen presentation revealed by human leukocyte antigen ligandomics for neoantigen prioritization. Front Immunol 8:1367.  https://doi.org/10.3389/fimmu.2017.01367 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Masucci GV, Cesano A, Eggermont A, Fox BA, Wang E, Marincola FM, Ciliberto G, Dobbin K, Puzanov I, Taube J, Wargo J, Butterfield LH, Villabona L, Thurin M, Postow MA, Sondel PM, Demaria S, Agarwala S, Ascierto PA (2017) The need for a network to establish and validate predictive biomarkers in cancer immunotherapy. J Transl Med 15(1):223.  https://doi.org/10.1186/s12967-017-1325-2 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Stroncek DF, Butterfield LH, Cannarile MA, Dhodapkar MV, Greten TF, Grivel JC, Kaufman DR, Kong HH, Korangy F, Lee PP, Marincola F, Rutella S, Siebert JC, Trinchieri G, Seliger B (2017) Systematic evaluation of immune regulation and modulation. J Immunother Cancer 5:21.  https://doi.org/10.1186/s40425-017-0223-8 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gnjatic S, Bronte V, Brunet LR, Butler MO, Disis ML, Galon J, Hakansson LG, Hanks BA, Karanikas V, Khleif SN, Kirkwood JM, Miller LD, Schendel DJ, Tanneau I, Wigginton JM, Butterfield LH (2017) Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy. J Immunother Cancer 5:44.  https://doi.org/10.1186/s40425-017-0243-4 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hopkins AM, Rowland A, Kichenadasse G, Wiese MD, Gurney H, McKinnon RA, Karapetis CS, Sorich MJ (2017) Predicting response and toxicity to immune checkpoint inhibitors using routinely available blood and clinical markers. Br J Cancer 117(7):913–920.  https://doi.org/10.1038/bjc.2017.274 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Martens A, Wistuba-Hamprecht K, Yuan J, Postow MA, Wong P, Capone M, Madonna G, Khammari A, Schilling B, Sucker A, Schadendorf D, Martus P, Dreno B, Ascierto PA, Wolchok JD, Pawelec G, Garbe C, Weide B (2016) Increases in absolute lymphocytes and circulating CD4 + and CD8 + T cells are associated with positive clinical outcome of melanoma patients treated with ipilimumab. Clin Cancer Res 22(19):4848–4858.  https://doi.org/10.1158/1078-0432.CCR-16-0249 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Martens A, Wistuba-Hamprecht K, Geukes Foppen M, Yuan J, Postow MA, Wong P, Romano E, Khammari A, Dreno B, Capone M, Ascierto PA, Di Giacomo AM, Maio M, Schilling B, Sucker A, Schadendorf D, Hassel JC, Eigentler TK, Martus P, Wolchok JD, Blank C, Pawelec G, Garbe C, Weide B (2016) Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab. Clin Cancer Res 22(12):2908–2918.  https://doi.org/10.1158/1078-0432.CCR-15-2412 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Weide B, Martens A, Hassel JC, Berking C, Postow MA, Bisschop K, Simeone E, Mangana J, Schilling B, Di Giacomo AM, Brenner N, Kahler K, Heinzerling L, Gutzmer R, Bender A, Gebhardt C, Romano E, Meier F, Martus P, Maio M, Blank C, Schadendorf D, Dummer R, Ascierto PA, Hospers G, Garbe C, Wolchok JD (2016) Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin Cancer Res 22(22):5487–5496.  https://doi.org/10.1158/1078-0432.CCR-16-0127 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Shreders A, Joseph RW, Johnson DB, Peng C, Puzanov I, Dronca RS, Bryce AH, Markovic S, Kottschade LA, Sosman JA (2015) Early change in lactate dehydrogenase is marker of response to PD-1/PDL1 inhibitors. J Clin Oncol 33(15_suppl):e20045–e20045.  https://doi.org/10.1200/jco.2015.33.15_suppl.e20045 CrossRefGoogle Scholar
  41. 41.
    Larkin JFP, Gonzalez R, Thomas L, Maio M, Hill A, Postow M, Savage K, Hassel J, Corrie P, Wagstaff J, Mortier L, Schadendorf D, Hamid O, Long GV, Marquez I, Rutkowski P, Walker D, Bhore R, Chiarion-Sileni V, Hogg D (2016) Efficacy of nivolumab plus ipilimumab combination in patients with advanced melanoma and elevated serum lactate dehydrogenase: a pooled analysis. Paper presented at the Society for Melanoma Research Boston, MA, US, 6–9 November 2016Google Scholar
  42. 42.
    Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, Wieland A, Sica GL, Yu K, Koenig L, Patel NT, Behera M, Wu H, McCausland M, Chen Z, Zhang C, Khuri FR, Owonikoko TK, Ahmed R, Ramalingam SS (2017) Proliferation of PD-1 + CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc Natl Acad Sci USA 114(19):4993–4998.  https://doi.org/10.1073/pnas.1705327114 CrossRefPubMedGoogle Scholar
  43. 43.
    Bjoern J, Juul Nitschke N, Zeeberg Iversen T, Schmidt H, Fode K, Svane IM (2016) Immunological correlates of treatment and response in stage IV malignant melanoma patients treated with Ipilimumab. Oncoimmunology 5(4):e1100788.  https://doi.org/10.1080/2162402X.2015.1100788 CrossRefPubMedGoogle Scholar
  44. 44.
    Subrahmanyam PB, Dong Z, Gusenleitner D, Giobbie-Hurder A, Severgnini M, Zhou J, Manos M, Eastman LM, Maecker HT, Hodi FS (2018) Distinct predictive biomarker candidates for response to anti-CTLA-4 and anti-PD-1 immunotherapy in melanoma patients. J Immunother Cancer 6(1):18.  https://doi.org/10.1186/s40425-018-0328-8 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Parikh K, Kumar A, Ahmed J, Anwar A, Puccio C, Chun H, Fanucchi M, Lim SH (2018) Peripheral monocytes and neutrophils predict response to immune checkpoint inhibitors in patients with metastatic non-small cell lung cancer. Cancer Immunol Immunother.  https://doi.org/10.1007/s00262-018-2192-2 CrossRefPubMedGoogle Scholar
  46. 46.
    Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, Xu W, Harmon S, Giles JR, Wenz B, Adamow M, Kuk D, Panageas KS, Carrera C, Wong P, Quagliarello F, Wubbenhorst B, D’Andrea K, Pauken KE, Herati RS, Staupe RP, Schenkel JM, McGettigan S, Kothari S, George SM, Vonderheide RH, Amaravadi RK, Karakousis GC, Schuchter LM, Xu X, Nathanson KL, Wolchok JD, Gangadhar TC, Wherry EJ (2017) T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545(7652):60–65.  https://doi.org/10.1038/nature22079 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Butterfield LH, Palucka AK, Britten CM, Dhodapkar MV, Hakansson L, Janetzki S, Kawakami Y, Kleen TO, Lee PP, Maccalli C, Maecker HT, Maino VC, Maio M, Malyguine A, Masucci G, Pawelec G, Potter DM, Rivoltini L, Salazar LG, Schendel DJ, Slingluff CL Jr, Song W, Stroncek DF, Tahara H, Thurin M, Trinchieri G, van Der Burg SH, Whiteside TL, Wigginton JM, Marincola F, Khleif S, Fox BA, Disis ML (2011) Recommendations from the iSBTc-SITC/FDA/NCI workshop on immunotherapy biomarkers. Clin Cancer Res 17(10):3064–3076.  https://doi.org/10.1158/1078-0432.CCR-10-2234 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Istituto Toscano TumoriUniversity Hospital of SienaSienaItaly
  2. 2.Italian Network for Tumor Bio-Immunotherapy Foundation, Center for Immuno-Oncology, Istituto Toscano TumoriUniversity Hospital of SienaSienaItaly
  3. 3.Lausanne Branch, Ludwig Institute for Cancer ResearchUniversity of LausanneEpalingesSwitzerland
  4. 4.Department of OncologyUniversity Hospital of Lausanne (CHUV)LausanneSwitzerland
  5. 5.Department of Surgery, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  6. 6.Earle A. Chiles Research Institute at the Robert W. Franz Cancer Center, Providence Cancer InstituteProvidence Portland Medical CenterPortlandUSA
  7. 7.Cancer, Immune Control and Escape TeamCordeliers Research Center, INSERM UMRS 1138ParisFrance
  8. 8.MerckAubonneSwitzerland
  9. 9.An Affiliate of Merck KGaADarmstadtGermany
  10. 10.OberurselGermany
  11. 11.Laboratoires Pierre FabreBoulogne-BillancourtFrance
  12. 12.Unit of Immuno-Biotherapy of Melanoma and Solid Tumors, Division of Experimental OncologySan Raffaele Scientific InstituteMilanItaly
  13. 13.Roche Pharma Research and Early DevelopmentRoche Innovation Center MunichPenzbergGermany
  14. 14.Cancer Research InstituteNew YorkUSA
  15. 15.Biocenter, Division of BioinformaticsMedical University of InnsbruckInnsbruckAustria
  16. 16.MalvernUSA
  17. 17.Ludwig Center for Cancer ImmunotherapyParker Institute for Cancer ImmunotherapySan FranciscoUSA
  18. 18.Department of Medicine, Memorial Sloan-Kettering Cancer CenterWeill Cornell Medical and Graduate SchoolsNew YorkUSA
  19. 19.Parker Institute for Cancer ImmunotherapySan FranciscoUSA

Personalised recommendations