Cancer Immunology, Immunotherapy

, Volume 68, Issue 2, pp 269–282 | Cite as

Targeting the polarization of tumor-associated macrophages and modulating mir-155 expression might be a new approach to treat diffuse large B-cell lymphoma of the elderly

  • Wagner A. Poles
  • Erika E. Nishi
  • Mariana B. de Oliveira
  • Angela I. P. Eugênio
  • Tathiana A. de Andrade
  • Antonio Hugo F. M. Campos
  • Ruy R. de CamposJr.
  • José Vassallo
  • Antonio C. Alves
  • Cristovam Scapulatempo Neto
  • Roberto Antonio Pinto Paes
  • Gilles Landman
  • Maria Cláudia N. Zerbini
  • Gisele W. B. ColleoniEmail author
Original Article


Aging immune deterioration and Epstein–Barr (EBV) intrinsic mechanisms play an essential role in EBV-positive diffuse large B-cell lymphoma (DLBCL) of the elderly (EBV + DLBCLe) pathogenesis, through the expression of viral proteins, interaction with host molecules and epigenetic regulation, such as miR-155, required for induction of M1 phenotype of macrophages. This study aims to evaluate the relationship between macrophage polarization pattern in the tumor microenvironment and relative expression of miR-155 in EBV + DLBCLe and EBV-negative DLBCL patients. We studied 28 EBV + DLBCLe and 65 EBV-negative DLBCL patients. Tumor-associated macrophages (TAM) were evaluated by expression of CD68, CD163 and CD163/CD68 ratio (degree of M2 polarization), using tissue microarray. RNA was extracted from paraffin-embedded tumor samples for miR-155 relative expression study. We found a significantly higher CD163/CD68 ratio in EBV + DLBCLe compared to EBV-negative DLBCL. In EBV-negative DLBCL, CD163/CD68 ratio was higher among advanced-staged/high-tumor burden disease and overexpression of miR-155 was associated with decreased polarization to the M2 phenotype of macrophages. The opposite was observed in EBV + DLBCLe patients: we found a positive association between miR-155 relative expression and CD163/CD68 ratio, which was not significant after outlier exclusion. We believe that the higher CD163/CD68 ratio in this group is probably due to the presence of the EBV since it directly affects macrophage polarization towards M2 phenotype through cytokine secretion in the tumor microenvironment. Therapeutic strategies modulating miR-155 expression or preventing immuno-regulatory and pro-tumor macrophage polarization could be adjuvants in EBV + DLBCLe therapy since this entity has a rich infiltration of M2 macrophages in its tumor microenvironment.


Non-Hodgkin lymphoma EBV Immunohistochemistry Tumor-associated macrophages microRNA 



Diffuse large B-cell lymphoma


Diffuse large B-cell lymphoma of the elderly


Epstein-Barr virus


Formalin-fixed paraffin embedded


International Prognostic Index




Quantitative real-time polymerase chain reaction


Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone


Tumor-associated macrophages


Tissue microarray


Author contributions

Wagner A. Poles and Gisele W. B. Colleoni designed the work, acquisition, analysis, and interpretation of data, wrote the manuscript; Erika E. Nishi, Tathiana A. de Andrade, and Ruy R. de Campos Jr. analyzed data and critically reviewed the manuscript for important intellectual content; Mariana B. de Oliveira and Angela I. P. Eugênio wrote and critically reviewed the manuscript; Antonio Hugo F. M. Campos, Gilles Landman, José Vassallo, Cristovam Scapulatempo Neto, Roberto Antonio Pinto Paes, and Antonio C. Alves reviewed samples, analyzed data and critically reviewed the manuscript; Maria Cláudia N. Zerbini contributed substantially to the conception, analyzed data, and critically reviewed the work.


Wagner A. Poles was partially supported by Fundaçao de Amparo à Pesquisa do Estado de Sao Paulo (FAPESP), Brazil. This work was supported by Fundaçao de Amparo à Pesquisa do Estado de Sao Paulo (FAPESP), Brazil 2010/17668-6.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Ethical approval

This study was approved by the ethical committees of all collaborating centers: Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, Brazil; Department of Physiology, Universidade Federal de São Paulo, Brazil; Department of Pathology, AC Camargo Cancer Center, Brazil; Department of Pathology, Universidade Federal de São Paulo, Brazil; Molecular Oncology Research Center, Barretos Cancer Hospital, Brazil; Faculty of Medical Sciences of Santa Casa of São Paulo; Department of Pathology, Universidade de São Paulo, Brazil, and was in accordance with the ethical standards of the institutional committees and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

262_2018_2273_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1288 KB)


  1. 1.
    Swerdlow SH, World Health Organization (2008) Who Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4. edn, World Health Organization Classification of Tumours. Lyon: International Agency for Research on Cancer (IARC)Google Scholar
  2. 2.
    Oyama T, Ichimura K, Suzuki R, Suzumiya J, Ohshima K, Yatabe Y et al (2003) Senile EBV + B-cell lymphoproliferative disorders: a clinicopathologic study of 22 patients. Am J Surg Pathol 27(1):16–26Google Scholar
  3. 3.
    Nikolich-Zugich J (2008) Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol 8(7):512–22. Google Scholar
  4. 4.
    Castillo JJ, Beltran BE, Miranda RN, Paydas S, Winer ES, Butera JN (2011) Epstein-Barr virus-positive diffuse large B-cell lymphoma of the elderly: what we know so far. Oncologist 16(1):87–96. Google Scholar
  5. 5.
    Nakamura S, Jaffe ES, Swerdlow SH (2008) EBV positive diffuse large B-cell lymphoma of the elderly. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. 4th Lyon: International Agency for Research on Cancer (IARC), pp 243–244Google Scholar
  6. 6.
    Montes-Moreno S, Odqvist L, Diaz-Perez JA, Lopez AB, de Villambrosia SG, Mazorra F et al (2012) EBV-positive diffuse large B-cell lymphoma of the elderly is an aggressive post-germinal center B-cell neoplasm characterized by prominent nuclear factor-kB activation. Mod Pathol 25(7):968–982. Google Scholar
  7. 7.
    Ok CY, Papathomas TG, Medeiros LJ, Young KH (2013) EBV-positive diffuse large B-cell lymphoma of the elderly. Blood 122:328–340Google Scholar
  8. 8.
    Andrade TA, Evangelista AF, Campos AH, Poles WA, Borges NM, Camillo CM et al (2014) A microRNA signature profile in EBV + diffuse large B-cell lymphoma of the elderly. Oncotarget 5(23):11813–11826. Google Scholar
  9. 9.
    Zonari E, Pucci F, Saini M, Mazzieri R, Politi LS, Gentner B et al (2013) A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective antitumor responses in mice. Blood 122(2):243–252. Google Scholar
  10. 10.
    Nam SJ, Go H, Paik JH, Kim TM, Heo DS, Kim CW et al (2014) An increase of M2 macrophages predicts poor prognosis in patients with diffuse large B-cell lymphoma treated with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone. Leuk Lymphoma 55(11):2466–2476. Google Scholar
  11. 11.
    De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211–226. Google Scholar
  12. 12.
    Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51. Google Scholar
  13. 13.
    Barros MH, Hauck F, Dreyer JH, Kempkes B, Niedobitek G (2013) Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS One 8(11):e80908. Google Scholar
  14. 14.
    Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J et al (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70(14):5728–5739. Google Scholar
  15. 15.
    Kawamura K, Komohara Y, Takaishi K, Katabuchi H, Takeya M (2009) Detection of M2 macrophages and colony-stimulating factor 1 expression in serous and mucinous ovarian epithelial tumors. Pathol Int 59 (5):300–5. Google Scholar
  16. 16.
    Hasan D, Chalouhi N, Jabbour P, Hashimoto T (2012) Macrophage imbalance (M1 vs. M2) and upregulation of mast cells in wall of ruptured human cerebral aneurysms: preliminary results. J Neuroinflamm 9:222. Google Scholar
  17. 17.
    Gomez-Gelvez JC, Salama ME, Perkins SL, Leavitt M, Inamdar KV (2016) Prognostic impact of tumor microenvironment in diffuse large B-cell lymphoma uniformly treated with R-CHOP chemotherapy. Am J Clin Pathol 145(4):514–523. Google Scholar
  18. 18.
    Wang J, Gao K, Lei W, Dong L, Xuan Q, Feng M et al (2017) Lymphocyte-to-monocyte ratio is associated with prognosis of diffuse large B-cell lymphoma: correlation with CD163 positive M2 type tumor-associated macrophages, not PD-1 positive tumor-infiltrating lymphocytes. Oncotarget 8(3):5414–5425. Google Scholar
  19. 19.
    Lan C, Huang X, Lin S, Huang H, Cai Q, Wan T et al (2013) Expression of M2-polarized macrophages is associated with poor prognosis for advanced epithelial ovarian cancer. Technol Cancer Res Treat 12 (3):259–267. Google Scholar
  20. 20.
    Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y et al (2013) Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer 108(4):914–923. Google Scholar
  21. 21.
    Weber M, Buttner-Herold M, Hyckel P, Moebius P, Distel L, Ries J et al (2014) Small oral squamous cell carcinomas with nodal lymphogenic metastasis show increased infiltration of M2 polarized macrophages–an immunohistochemical analysis. J Craniomaxillofac Surg 42(7):1087–1094. Google Scholar
  22. 22.
    International Non-Hodgkin’s Lymphoma Prognostic Factors P (1993) A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med 329(14):987–994. Google Scholar
  23. 23.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. Google Scholar
  24. 24.
    Goni R, García P, Foissac S (2012) The qPCR data statistical analysis. Integromics W P 9:1–9Google Scholar
  25. 25.
    Hinkle DE, Wiersma W, Jurs SG (2003) Applied statistics for the behavioral sciences, 5th edn. Houghton Mifflin, BostonGoogle Scholar
  26. 26.
    Sandhu SK, Croce CM, Garzon R (2011) Micro-RNA expression and function in lymphomas. Adv Hematol 2011:347137. Google Scholar
  27. 27.
    Lawrie CH (2013) MicroRNAs and lymphomagenesis: a functional review. Br J Haematol 160(5):571–581. Google Scholar
  28. 28.
    Wada M, Okamura T, Okada M, Teramura M, Masuda M, Motoji T et al (1999) Frequent chromosome arm 13q deletion in aggressive non-Hodgkin’s lymphoma. Leukemia 13(5):792–798Google Scholar
  29. 29.
    Li C, Kim SW, Rai D, Bolla AR, Adhvaryu S, Kinney MC et al (2009) Copy number abnormalities, MYC activity, and the genetic fingerprint of normal B cells mechanistically define the microRNA profile of diffuse large B-cell lymphoma. Blood 113(26):6681–6690. Google Scholar
  30. 30.
    Wong KY, Yim RL, Kwong YL, Leung CY, Hui PK, Cheung F et al (2013) Epigenetic inactivation of the MIR129-2 in hematological malignancies. J Hematol Oncol 6:16. Google Scholar
  31. 31.
    Robertus JL, Kluiver J, Weggemans C, Harms G, Reijmers RM, Swart Y et al (2010) MiRNA profiling in B non-Hodgkin lymphoma: a MYC-related miRNA profile characterizes Burkitt lymphoma. Br J Haematol 149(6):896–899. Google Scholar
  32. 32.
    Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J et al (2004) Identification of virus-encoded microRNAs. Science 304(5671):734–736. Google Scholar
  33. 33.
    Barth S, Meister G, Grasser FA (2011) EBV-encoded miRNAs. Biochim Biophys Acta 1809(11–12):631–640. Google Scholar
  34. 34.
    Morscio J, Finalet Ferreiro J, Vander Borght S, Bittoun E, Gheysens O, Dierickx D et al (2017) Identification of distinct subgroups of EBV-positive post-transplant diffuse large B-cell lymphoma. Mod Pathol 30(3):370–381. Google Scholar
  35. 35.
    Sato A, Yamakawa N, Okuyama K, Kotani A, Nakamura N, Ando K (2014) The critical interaction between Epstein-Barr virus (EBV) positive B-cells and tumor associated macrophages (TAMs). Blood 124:2989Google Scholar
  36. 36.
    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. Google Scholar
  37. 37.
    Park S, Lee J, Ko YH, Han A, Jun HJ, Lee SC et al (2007) The impact of Epstein-Barr virus status on clinical outcome in diffuse large B-cell lymphoma. Blood 110(3):972–978.
  38. 38.
    Riihijarvi S, Fiskvik I, Taskinen M, Vajavaara H, Tikkala M, Yri O et al (2015) Prognostic influence of macrophages in patients with diffuse large B-cell lymphoma: a correlative study from a Nordic phase II trial. Haematologica 100(2):238–245. Google Scholar
  39. 39.
    Marinaccio C, Ingravallo G, Gaudio F, Perrone T, Nico B, Maoirano E et al (2014) Microvascular density, CD68 and tryptase expression in human diffuse large B-cell lymphoma. Leuk Res 38(11):1374–1377. Google Scholar
  40. 40.
    Meyer PN, Fu K, Greiner T, Smith L, Delabie J, Gascoyne R et al (2011) The stromal cell marker SPARC predicts for survival in patients with diffuse large B-cell lymphoma treated with rituximab. Am J Clin Pathol 135(1):54–61. Google Scholar
  41. 41.
    Hasselblom S, Hansson U, Sigurdardottir M, Nilsson-Ehle H, Ridell B, Andersson PO (2008) Expression of CD68 + tumor-associated macrophages in patients with diffuse large B-cell lymphoma and its relation to prognosis. Pathol Int 58(8):529–532. Google Scholar
  42. 42.
    Coutinho R, Clear AJ, Mazzola E, Owen A, Greaves P, Wilson A et al (2015) Revisiting the immune microenvironment of diffuse large B-cell lymphoma using a tissue microarray and immunohistochemistry: robust semi-automated analysis reveals CD3 and FoxP3 as potential predictors of response to R-CHOP. Haematologica 100(3):363–369. Google Scholar
  43. 43.
    Marchesi F, Cirillo M, Bianchi A, Gately M, Olimpieri OM, Cerchiara E et al (2015) High density of CD68+/CD163 + tumour-associated macrophages (M2-TAM) at diagnosis is significantly correlated to unfavorable prognostic factors and to poor clinical outcomes in patients with diffuse large B-cell lymphoma. Hematol Oncol 33(2):110–112. Google Scholar
  44. 44.
    Wada N, Zaki MA, Hori Y, Hashimoto K, Tsukaguchi M, Tatsumi Y et al (2012) Tumour-associated macrophages in diffuse large B-cell lymphoma: a study of the Osaka Lymphoma Study Group. Histopathology 60(2):313–319. Google Scholar
  45. 45.
    Jeong J, Oh EJ, Yang WI, Kim SJ, Yoon SO (2017) Implications of infiltrating immune cells within bone marrow of patients with diffuse large B-cell lymphoma. Hum Pathol 64:222–231. Google Scholar
  46. 46.
    O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D (2009) Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA 106(17):7113–7118. Google Scholar
  47. 47.
    Baran CP, Tridandapani S, Helgason CD, Humphries RK, Krystal G, Marsh CB (2003) The inositol 5′-phosphatase SHIP-1 and the Src kinase Lyn negatively regulate macrophage colony-stimulating factor-induced Akt activity. J Biol Chem 278(40):38628–38636. Google Scholar
  48. 48.
    Mondal S, Subramanian KK, Sakai J, Bajrami B, Luo HR (2012) Phosphoinositide lipid phosphatase SHIP1 and PTEN coordinate to regulate cell migration and adhesion. Mol Biol Cell 23(7):1219–1230. Google Scholar
  49. 49.
    Rajaram MV, Butchar JP, Parsa KV, Cremer TJ, Amer A, Schlesinger LS et al (2009) Akt and SHIP modulate Francisella escape from the phagosome and induction of the Fas-mediated death pathway. PLoS One 4(11):e7919. Google Scholar
  50. 50.
    Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG et al (2008) Macrophage polarization in tumour progression. Semin Cancer Biol 18(5):349–355. Google Scholar
  51. 51.
    Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22(2):231–237. Google Scholar
  52. 52.
    Tan G, Visser L, Tan L, Berg A, Diepstra A (2018) The microenvironment in Epstein–Barr virus-associated malignancies. Pathogens 7:2. Google Scholar
  53. 53.
    Linnstaedt SD, Gottwein E, Skalsky RL, Luftig MA, Cullen BR (2010) Virally induced cellular microRNA miR-155 plays a key role in B-cell immortalization by Epstein-Barr virus. J Virol 84(22):11670–11678. Google Scholar
  54. 54.
    Yin Q, McBride J, Fewell C, Lacey M, Wang X, Lin Z et al (2008) MicroRNA-155 is an Epstein-Barr virus-induced gene that modulates Epstein-Barr virus-regulated gene expression pathways. J Virol 82(11):5295–5306. Google Scholar
  55. 55.
    Gatto G, Rossi A, Rossi D, Kroening S, Bonatti S, Mallardo M (2008) Epstein-Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-kappaB pathway. Nucleic Acids Res 36(20):6608–6619. Google Scholar
  56. 56.
    Essandoh K, Li Y, Huo J, Fan GC (2016) MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock 46(2):122–131. Google Scholar
  57. 57.
    Lu L, McCurdy S, Huang S, Zhu X, Peplowska K, Tiirikainen M et al (2016) Time series miRNA-mRNA integrated analysis reveals critical miRNAs and targets in macrophage polarization. Sci Rep 6:37446. Google Scholar
  58. 58.
    Zhang P, Wang H, Luo X, Liu H, Lu B, Li T et al (2018) MicroRNA-155 inhibits polarization of macrophages to M2-type and suppresses choroidal neovascularization. Inflammation 41(1):143–153. Google Scholar
  59. 59.
    Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R et al (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127(20):2375–2390. Google Scholar
  60. 60.
    Rogers TL, Holen I (2011) Tumour macrophages as potential targets of bisphosphonates. J Transl Med 9:177. Google Scholar
  61. 61.
    Miselis NR, Wu ZJ, Van Rooijen N, Kane AB (2008) Targeting tumor-associated macrophages in an orthotopic murine model of diffuse malignant mesothelioma. Mol Cancer Ther 7(4):788–799. Google Scholar
  62. 62.
    Clinical Trials NCT02637531 (2017)>. Accessed 18 Jul 2017
  63. 63.
    Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S et al (2016) PI3Kgamma is a molecular switch that controls immune suppression. Nature 539(7629):437–442. Google Scholar
  64. 64.
    De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH et al (2016) Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature 539(7629):443–447. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wagner A. Poles
    • 1
  • Erika E. Nishi
    • 2
  • Mariana B. de Oliveira
    • 1
  • Angela I. P. Eugênio
    • 1
  • Tathiana A. de Andrade
    • 1
  • Antonio Hugo F. M. Campos
    • 3
  • Ruy R. de CamposJr.
    • 2
  • José Vassallo
    • 3
  • Antonio C. Alves
    • 4
  • Cristovam Scapulatempo Neto
    • 5
  • Roberto Antonio Pinto Paes
    • 6
  • Gilles Landman
    • 4
  • Maria Cláudia N. Zerbini
    • 7
  • Gisele W. B. Colleoni
    • 1
    Email author
  1. 1.Department of Clinical and Experimental OncologyUniversidade Federal de São PauloSao PauloBrazil
  2. 2.Department of PhysiologyUniversidade Federal de São PauloSao PauloBrazil
  3. 3.Department of PathologyAC Camargo Cancer CenterSao PauloBrazil
  4. 4.Department of PathologyUniversidade Federal de São PauloSao PauloBrazil
  5. 5.Molecular Oncology Research CenterBarretos Cancer HospitalBarretosBrazil
  6. 6.Faculty of Medical Sciences of Santa Casa of São PauloSao PauloBrazil
  7. 7.Department of PathologyUniversidade de São PauloSao PauloBrazil

Personalised recommendations