Advertisement

Prediction of neoepitopes from murine sequencing data

  • Anne-Mette Bjerregaard
  • Thomas Kainamura Pedersen
  • Andrea Marion Marquard
  • Sine Reker Hadrup
Letter to the Editors

Dear Editors,

We recently published the tool MuPeXI, the mutant peptide extractor and informer, enabling neoepitope prediction from tumor sequencing data [1]. MuPeXI is originally designed for variant calls obtained from sequencing data of human origin but increasing interest to determine neoepitopes in murine models have encouraged us to update and test MuPeXI for mouse compatibility. The murine-compatible MuPeXI is now available as a command line tool (https://github.com/ambj/MuPeXI) together with a mouse-specific web server (http://www.cbs.dtu.dk/services/MuPeXI-mouse/).

Despite the interest for determining neoepitopes from preclinical mouse models, only few tools for neoepitope prediction have been designed and evaluated to allow neoepitope prediction from data of murine origin. To fulfill this need, we optimized MuPeXI to enable identification of murine neopeptides. MuPeXI is now compatible with the genetic reference of mus musculus, as well as the two commonly used mouse strains,...

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bjerregaard A-M, Nielsen M, Hadrup SR et al (2017) MuPeXI: prediction of neo-epitopes from tumor sequencing data. Cancer Immunol Immunother 66:1123–1130.  https://doi.org/10.1007/s00262-017-2001-3 CrossRefPubMedGoogle Scholar
  2. 2.
    Castle JC, Loewer M, Boegel S et al (2014) Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma. BMC Genom 15:190.  https://doi.org/10.1186/1471-2164-15-190 CrossRefGoogle Scholar
  3. 3.
    Mosely SIS, Prime JE, Sainson RCA et al (2017) Rational selection of syngeneic preclinical tumor models for immunotherapeutic drug discovery. Cancer Immunol Res 5:29–41.  https://doi.org/10.1158/2326-6066.CIR-16-0114 CrossRefPubMedGoogle Scholar
  4. 4.
    DeVette CI, Andreatta M, Bardet W et al (2018) NetH2pan: a computational tool to guide MHC peptide prediction on murine tumors. Cancer Immunol Res Canimm.  https://doi.org/10.1158/2326-6066.CIR-17-0298 0298.2017.CrossRefGoogle Scholar
  5. 5.
    Kreiter S, Vormehr M, van de Roemer N et al (2015) Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520:692–696.  https://doi.org/10.1038/nature14426 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Technical University of DenmarkLyngbyDenmark

Personalised recommendations