Cancer Immunology, Immunotherapy

, Volume 68, Issue 1, pp 57–70 | Cite as

Serum miRNA-based distinct clusters define three groups of breast cancer patients with different clinicopathological and immune characteristics

  • Sotirios P. Fortis
  • Christoforos K. Vaxevanis
  • Louisa G. Mahaira
  • Michael Sofopoulos
  • Nectaria N. Sotiriadou
  • Amalia Dinou
  • Niki Arnogiannaki
  • Catherine Stavropoulos-Giokas
  • Dimitris Thanos
  • Constantin N. Baxevanis
  • Sonia A. PerezEmail author
Original Article


Breast cancer (BCa) is a heterogeneous disease with different histological, prognostic and clinical aspects. Therefore, the need for identification of novel biomarkers for diagnosis, prognosis and monitoring of disease, as well as treatment outcome prediction remains at the forefront of research. The search for circulating elements, obtainable by simple peripheral blood withdrawal, which may serve as possible biomarkers, constitutes still a challenge. In the present study, we have evaluated the expression of 6 circulating miRNAs, (miR-16, miR-21, miR-23α, miR-146α, miR-155 and miR-181α), in operable BCa patients, with non-metastatic, invasive ductal carcinoma, not receiving neoadjuvant chemotherapy. These miRNAs, known to be involved in both tumor cell progression and immune pathways regulation, were analyzed in relation to circulating cytokines, tumor immune-cell infiltration and established prognostic clinicopathological characteristics. We have identified three different clusters, with overall low (C1), moderate (C2) or high (C3) expression levels of these six circulating miRNAs, which define three distinct groups of non-metastatic BCa patients characterized by different clinicopathological and immune-related characteristics, with possibly different clinical outcomes. Our data provide the proof-of-principle to support the notion that, up- or down-regulation of the same circulating miRNA may reflect different prognosis in BCa. Nonetheless, the prognostic and/or predictive potential of these three “signatures” needs to be further evaluated in larger cohorts of BCa patients with an, at least, 5-year clinical follow-up.


MiRNAs signatures Breast cancer Tumor infiltration Biomarkers Cytokines/chemokines 



American Joint Committee on Cancer


Breast cancer




Estrogen receptor


Favorable combined immune signatures


Formalin-fixed, paraffin-embedded


Hematoxylin Eosin


Human epidermal growth factor receptor 2


Human leukocyte antigen




Interleukin 1 receptor antagonist


Invasive margin


Long noncoding RNA


Major histocompatibility complex




Messenger RNA


Nuclear factor kappa beta


Progesterone receptor


Receiver operating characteristic


Tumor size


Tumor center


Transforming growth factor beta


T regulatory (cell)


Unfavorable combined immune signatures


Untranslated region


Author contributions

Sotirios P. Fortis designed and performed research, analyzed data, and wrote the manuscript; Christoforos K. Vaxevanis performed research, analyzed data and wrote the manuscript; Louisa G. Mahaira, Michael Sofopoulos, Nectaria N. Sotiriadou, Amalia Dinou, Niki Arnogiannaki, Catherine Stavropoulos-Giokas, contributed to experimental design, and performed research; Dimitris Thanos contributed to experimental design and data analysis; Constantin N. Baxevanis contributed to experimental design, data analysis, and wrote the manuscript; Sonia A. Perez supervised the study, contributed to experimental design, data analysis, and wrote the manuscript. All authors read and approved the manuscript.


This study was supported by grant GER_1968 (acronym ISPEBREAST) to Constantin Baxevanis from a bilateral research and innovation cooperation, funded by the General Secretariat for Research and Technology (GSRT) of the Ministry of Education, Research and Religious Affairs of the Hellenic Republic and the German Federal Ministry for Education and Research (BMBF), and a donation to Sonia Perez from the Haegeman-Goossens family, Netherlands.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Institutional Review Board of St. Savas Cancer Hospital (IRB-ID 6079/448/10-6-13).

Ethical standards

All prospectively enrolled patients signed a written informed consent, approved by the Review Board at St. Savas Cancer Hospital. All data of other retrospectively analyzed patients were obtained from an anonymized database constructed for the purposes of a previous study [24]. Healthy volunteers presented as blood donors at the Blood Collection and Transfusion Department of Saint Savas Hospital. They fulfilled all requirements for blood donation. Volunteers consented verbally, and no personal information was recorded. All procedures were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

262_2018_2252_MOESM1_ESM.pdf (1009 kb)
Supplementary material 1 (PDF 1008 KB)


  1. 1.
    Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochimica et Biophysica Acta 1805(1):105–117. CrossRefPubMedGoogle Scholar
  2. 2.
    Mannello F, Ligi D (2013) Resolving breast cancer heterogeneity by searching reliable protein cancer biomarkers in the breast fluid secretome. BMC Cancer 13:344. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bai JP, Bell R, Buckman S, Burckart GJ, Eichler HG, Fang KC, Goodsaid FM, Jusko WJ, Lesko LL, Meibohm B, Patterson SD, Puig O, Smerage JB, Snider BJ, Wagner JA, Wang J, Walton MK, Weiner R (2011) Translational biomarkers: from preclinical to clinical a report of 2009 AAPS/ACCP Biomarker Workshop. AAPS J 13(2):274–283. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ravelli A, Reuben JM, Lanza F, Anfossi S, Cappelletti MR, Zanotti L, Gobbi A, Senti C, Brambilla P, Milani M, Spada D, Pedrazzoli P, Martino M, Bottini A, Generali D,, Marrow Transplantation S (2015) Solid tumor working party of European B. Breast cancer circulating biomarkers: advantages, drawbacks, and new insights. Tumour Biol J Int Soc Oncodev Biol Med 36(9):6653–6665. CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Li Y, Wang Q, Zhang X, Wang D, Tang HC, Meng X, Ding X (2017) Identification of an lncRNA-miRNA-mRNA interaction mechanism in breast cancer based on bioinformatic analysis. Mol Med Rep 16(4):5113–5120. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Amorim M, Salta S, Henrique R, Jeronimo C (2016) Decoding the usefulness of non-coding RNAs as breast cancer markers. J Transl Med 14:265. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Liu Y, Zhang Y, Li Q, Li J, Ma X, Xing J, Rong S, Wu Z, Tian Y, Li J, Jia L (2017) MiRNAs predict the prognosis of patients with triple negative breast cancer: a meta-analysis. PloS One 12(1):e0170088. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bahrami A, Aledavood A, Anvari K, Hassanian SM, Maftouh M, Yaghobzade A, Salarzaee O, ShahidSales S, Avan A (2018) The prognostic and therapeutic application of microRNAs in breast cancer: tissue and circulating microRNAs. J Cell Physiol 233(2):774–786. CrossRefPubMedGoogle Scholar
  9. 9.
    Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20(8):460–469. CrossRefGoogle Scholar
  10. 10.
    Paraskevopoulou MD, Hatzigeorgiou AG (2016) Analyzing MiRNA–LncRNA interactions. Methods Mol Biol 1402:271–286. CrossRefPubMedGoogle Scholar
  11. 11.
    Chin LJ, Slack FJ (2008) A truth serum for cancer—microRNAs have major potential as cancer biomarkers. Cell Res 18(10):983–984. CrossRefPubMedGoogle Scholar
  12. 12.
    van Schooneveld E, Wildiers H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ (2015) Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res: BCR 17:21. CrossRefPubMedGoogle Scholar
  13. 13.
    Farina NH, Ramsey JE, Cuke ME, Ahern TP, Shirley DJ, Stein JL, Stein GS, Lian JB, Wood ME (2017) Development of a predictive miRNA signature for breast cancer risk among high-risk women. Oncotarget 8(68):112170–112183. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hamam R, Hamam D, Alsaleh KA, Kassem M, Zaher W, Alfayez M, Aldahmash A, Alajez NM (2017) Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers. Cell Death Dis 8(9):e3045. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bertoli G, Cava C, Castiglioni I (2015) MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics 5(10):1122–1143. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Backes C, Meese E, Keller A (2016) Specific miRNA disease biomarkers in blood, serum and plasma: challenges and prospects. Mol Diagn Ther 20(6):509–518. CrossRefPubMedGoogle Scholar
  17. 17.
    Mehta A, Baltimore D (2016) MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol 16(5):279–294. CrossRefPubMedGoogle Scholar
  18. 18.
    Eichmuller SB, Osen W, Mandelboim O, Seliger B (2017) Immune modulatory microRNAs involved in tumor attack and tumor immune escape. J Natl Cancer Inst 109 (10).
  19. 19.
    Paladini L, Fabris L, Bottai G, Raschioni C, Calin GA, Santarpia L (2016) Targeting microRNAs as key modulators of tumor immune response. J Exp Clin Cancer Res 35:103. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Taube JM, Galon J, Sholl LM, Rodig SJ, Cottrell TR, Giraldo NA, Baras AS, Patel SS, Anders RA, Rimm DL, Cimino-Mathews A (2018) Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol 31(2):214–234. CrossRefPubMedGoogle Scholar
  21. 21.
    Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell research 18(10):997–1006. CrossRefPubMedGoogle Scholar
  22. 22.
    Labbaye C, Testa U (2012) The emerging role of MIR-146A in the control of hematopoiesis, immune function and cancer. J Hematol Oncol 5:13. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ma X, Becker Buscaglia LE, Barker JR, Li Y (2011) MicroRNAs in NF-kappaB signaling. J Mol Cell Biol 3(3):159–166. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fortis SP, Sofopoulos M, Sotiriadou NN, Haritos C, Vaxevanis CK, Anastasopoulou EA, Janssen N, Arnogiannaki N, Ardavanis A, Pawelec G, Perez SA, Baxevanis CN (2017) Differential intratumoral distributions of CD8 and CD163 immune cells as prognostic biomarkers in breast cancer. J Immunother Cancer 5:39. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Janssen N, Fortis SP, Speigl L, Haritos C, Sotiriadou NN, Sofopoulos M, Arnogiannaki N, Stavropoulos-Giokas C, Dinou A, Perez S, Pawelec G, Baxevanis CN, Shipp C (2017) Peripheral T cell responses to tumour antigens are associated with molecular, immunogenetic and cellular features of breast cancer patients. Breast Cancer Res Treat 161(1):51–62. CrossRefPubMedGoogle Scholar
  26. 26.
    Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC (2008) Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27(42):5643–5647. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Anastasopoulou EA, Voutsas IF, Keramitsoglou T, Gouttefangeas C, Kalbacher H, Thanos A, Papamichail M, Perez SA, Baxevanis CN (2015) A pilot study in prostate cancer patients treated with the AE37 Ii-key-HER-2/neu polypeptide vaccine suggests that HLA-A*24 and HLA-DRB1*11 alleles may be prognostic and predictive biomarkers for clinical benefit. Cancer Immunol Immunother 64(9):1123–1136. CrossRefPubMedGoogle Scholar
  28. 28.
    Stokidis S, Dinou A, Fortis SP, Vaxevanis CK, Konstantellou M, Stavropoulos-Giokas C, Perez SA, Baxevanis CN (2017) The impact of HLA-A*02 and HLA-A*24 allele expression in prostate cancer prognosis In: 3rd Symposium on Advances in Cancer Immunology and Immunotherapy, Athens, Greece, November 2–4.
  29. 29.
    Vaxevanis C, Anastasopoulou E, Tzonis P, Ardavanis A, Baxevanis CN, Peoples GE, Perez SA (2017) An IFN-γ response-based algorithm with predictive potential in AE37-vaccinated breast cancer patients In: 3rd Symposium on Advances in Cancer Immunology and Immunotherapy, Athens, Greece, November 2–4 2017.
  30. 30.
    Han JG, Jiang YD, Zhang CH, Yang YM, Pang D, Song YN, Zhang GQ (2017) A novel panel of serum miR-21/miR-155/miR-365 as a potential diagnostic biomarker for breast cancer. Ann Surg Treat Res 92(2):55–66. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jurkovicova D, Smolkova B, Magyerkova M, Sestakova Z, Kajabova VH, Kulcsar L, Zmetakova I, Kalinkova L, Krivulcik T, Karaba M, Benca J, Sedlackova T, Minarik G, Cierna Z, Danihel L, Mego M, Chovanec M, Fridrichova I (2017) Down-regulation of traditional oncomiRs in plasma of breast cancer patients. Oncotarget 8(44):77369–77384. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yang C, Tabatabaei SN, Ruan X, Hardy P (2017) The dual regulatory role of MiR-181a in breast cancer. Cell Physiol Biochem 44(3):843–856. CrossRefPubMedGoogle Scholar
  33. 33.
    Perez EA, Romond EH, Suman VJ, Jeong JH, Sledge G, Geyer CE Jr, Martino S, Rastogi P, Gralow J, Swain SM, Winer EP, Colon-Otero G, Davidson NE, Mamounas E, Zujewski JA, Wolmark N (2014) Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol 32(33):3744–3752. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wu H, Neilson JR, Kumar P, Manocha M, Shankar P, Sharp PA, Manjunath N (2007) miRNA profiling of naive, effector and memory CD8 T cells. PloS One 2(10):e1020. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lin R, Chen L, Chen G, Hu C, Jiang S, Sevilla J, Wan Y, Sampson JH, Zhu B, Li QJ (2014) Targeting miR-23a in CD8 + cytotoxic T lymphocytes prevents tumor-dependent immunosuppression. J Clin Invest 124(12):5352–5367. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Huffaker TB, Hu R, Runtsch MC, Bake E, Chen X, Zhao J, Round JL, Baltimore D, O’Connell RM (2012) Epistasis between microRNAs 155 and 146a during T cell-mediated antitumor immunity. Cell Rep 2(6):1697–1709. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hippen KL, Loschi M, Nicholls J, MacDonald KPA, Blazar BR (2018) Effects of MicroRNA on regulatory T cells and implications for adoptive cellular therapy to ameliorate Graft-versus-host disease. Front Immunol 9:57. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    So AY, Zhao JL, Baltimore D (2013) The Yin and Yang of microRNAs: leukemia and immunity. Immunol Rev 253(1):129–145. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K, Rudensky AY (2009) Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30(1):80–91. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Baxevanis CN, Perez SA (2015) Cancer dormancy: a regulatory role for endogenous immunity in establishing and maintaining the tumor dormant state. Vaccines (Basel) 3(3):597–619. CrossRefGoogle Scholar
  41. 41.
    Perry MM, Williams AE, Tsitsiou E, Larner-Svensson HM, Lindsay MA (2009) Divergent intracellular pathways regulate interleukin-1beta-induced miR-146a and miR-146b expression and chemokine release in human alveolar epithelial cells. FEBS Lett 583(20):3349–3355. CrossRefPubMedGoogle Scholar
  42. 42.
    Testa U, Pelosi E, Castelli G, Labbaye C (2017) miR-146 and miR-155: Two Key Modulators of Immune Response and Tumor Development. Non-Coding RNA 3(3):1–22. CrossRefGoogle Scholar
  43. 43.
    Sohel MH (2016) Extracellular/circulating MicroRNAs: release mechanisms, functions and challenges. Achiev Life Sci 10(2):175–186. CrossRefGoogle Scholar
  44. 44.
    Nagata Y, Hanagiri T, Mizukami M, Kuroda K, Shigematsu Y, Baba T, Ichiki Y, Yasuda M, So T, Takenoyama M, Sugio K, Nagashima A, Yasumoto K (2009) Clinical significance of HLA class I alleles on postoperative prognosis of lung cancer patients in Japan. Lung Cancer 65(1):91–97. CrossRefPubMedGoogle Scholar
  45. 45.
    De Petris L, Bergfeldt K, Hising C, Lundqvist A, Tholander B, Pisa P, van der Zanden HG, Masucci G (2004) Correlation between HLA-A2 gene frequency, latitude, ovarian and prostate cancer mortality rates. Med Oncol 21(1):49–52. CrossRefPubMedGoogle Scholar
  46. 46.
    Jarry J, Schadendorf D, Greenwood C, Spatz A, van Kempen LC (2014) The validity of circulating microRNAs in oncology: five years of challenges and contradictions. Mol Oncol 8(4):819–829. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sotirios P. Fortis
    • 1
  • Christoforos K. Vaxevanis
    • 1
  • Louisa G. Mahaira
    • 1
  • Michael Sofopoulos
    • 2
  • Nectaria N. Sotiriadou
    • 2
  • Amalia Dinou
    • 3
  • Niki Arnogiannaki
    • 2
  • Catherine Stavropoulos-Giokas
    • 3
  • Dimitris Thanos
    • 4
  • Constantin N. Baxevanis
    • 1
  • Sonia A. Perez
    • 1
    Email author
  1. 1.Cancer Immunology and Immunotherapy CenterSaint Savas Cancer HospitalAthensGreece
  2. 2.Pathology DepartmentSaint Savas Cancer HospitalAthensGreece
  3. 3.Hellenic Cord Blood BankBiomedical Research Foundation Academy of AthensAthensGreece
  4. 4.Biomedical Research FoundationAcademy of AthensAthensGreece

Personalised recommendations