Advertisement

Increased antitumor activities of glypican-3-specific chimeric antigen receptor-modified T cells by coexpression of a soluble PD1–CH3 fusion protein

  • Zeyan Pan
  • Shengmeng Di
  • Bizhi Shi
  • Hua Jiang
  • Zhimin Shi
  • Ying Liu
  • Yi Wang
  • Hong Luo
  • Min Yu
  • Xiuqi Wu
  • Zonghai Li
Original Article

Abstract

Our recent clinical study demonstrated that glypican-3 (GPC3)-specific chimeric antigen receptor-modified T (CAR-T) cells are a promising treatment for hepatocellular carcinoma (HCC). However, the interaction of programmed cell death 1 (PD-1) and PD-L1-mediated T-cell inhibition is involved in immune evasion in a wide range of solid tumors, including HCC. To overcome this problem, we introduced a fusion protein composed of a PD-1 extracellular domain and CH3 from IgG4 into GPC3-specific CAR-T cells (GPC3-28Z) to block the PD-1/PD-L1 pathway. GPC3-specific CAR-T cells carrying the PD-1–CH3 fusion protein (sPD1) specifically recognized and lysed GPC3-positive HCC cells. The proliferation capacity of GPC3-28Z-sPD1 T cells after weekly stimulation with target cells was much higher than that of control GPC3-28Z T cells. Additionally, the coexpression of sPD1 could protect CAR-T cells from exhaustion when incubated with target cells, as phosphorylated AKT and Bcl-xL expression levels were higher in GPC3-28Z-sPD1 T cells than in GPC3-28Z cells. Importantly, in two HCC tumor xenograft models, GPC3-28Z-sPD1 T cells displayed a significantly higher tumor suppression capacity than GPC3-28Z T cells. In addition, an increased number of CD3+ T cells in the circulation and tumors and increased granzyme B levels and decreased Ki67 expression levels in the tumors were observed in the mice treated with GPC3-28Z-sPD1 T cells. Together, these data indicated that GPC3-specific CAR-T cells carrying sPD1 show promise as a treatment for patients with HCC.

Keywords

Chimeric antigen receptor PD-1/PD-L1 Hepatocellular carcinoma Glypican-3 sPD1 

Abbreviations

Bcl-xL

B cell lymphoma-extra large

CAR

Chimeric antigen receptor

CFSE

Carboxyfluorescein succinimidyl ester

GPC3

Glypican-3

LAG-3

Lymphocyte activation gene 3

HCC

Hepatocellular carcinoma

MOI

Multiplicity of infection

PBMCs

Peripheral blood mononuclear cells

PD-1

Programmed cell death 1

PD-L1

Programmed cell death 1 ligand 1

P-AKT

Phosphorylated AKT

sPD1

Soluble PD-1–CH3 fusion protein

Tcm

Central memory T cell

TME

Tumor microenvironment

TIM-3

T cell/transmembrane, immunoglobulin, and mucin-1

Notes

Acknowledgements

Linguistic revision was done by Nature Research Editing Service.

Author Contributions

ZL conceived the ideas, designed the research and revised the manuscript; ZP designed subsequent experiments; ZP and SD performed the experiments and wrote the manuscript; BS performed molecular cloning work; HJ helped to perform the in vitro and in vivo work; ZS analyzed the data; YL, YW, HL, MY and XW assisted with the in vitro work.

Funding

This work was supported by the Supporting Programs of Shanghai Science and Technology Innovation Action Plan (No. 16DZ1910700), the “13th Five-Year Plan” National Science and Technology Major Project of China (2017ZX10203206006), the Collaborative Innovation Center for Translational Medicine at Shanghai Jiao Tong University School of Medicine (TM201601), the Research Fund of the Shanghai Municipal Commission of Health and Family Planning (No. 20174Y0178), and the National Natural Science Foundation of China (81472569).

Compliance with ethical standards

Conflict of interest

Dr. Zonghai Li has ownership interests regarding GPC3-specific CAR-T cells with sPD1 coexpression. The other authors declare no conflict of interest.

Ethical approval and ethical standards

The study was approved by the Shanghai Science and Technology Committee, approval number: SYXK (SH) 2017-0011. The protocols followed the appropriate guidelines and were approved by the Shanghai Medical Experimental Animal Care Commission.

Informed consent

The peripheral blood mononuclear cells (PBMCs) from healthy donors were obtained by the Shanghai Blood Center from staff members of the research laboratory who volunteered to donate blood. They consented to the use of this blood for research purposes.

Supplementary material

262_2018_2221_MOESM1_ESM.pdf (809 kb)
Supplementary material 1 (PDF 808 KB)

References

  1. 1.
    Lim WA, June CH (2017) The principles of engineering immune cells to treat cancer. Cell 168(4):724–740.  https://doi.org/10.1016/j.cell.2017.01.016 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gao H, Li K, Tu H, Pan X, Jiang H, Shi B, Kong J, Wang H, Yang S, Gu J, Li Z (2014) Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res 20(24):6418–6428.  https://doi.org/10.1158/1078-0432.CCR-14-1170 CrossRefPubMedGoogle Scholar
  3. 3.
    Zhai B, Shi D, Gao H, Qi X, Jiang H, Zhang Y, Chi J, Ruan H, Wang H, Ru QC, Li Z (2017) A phase I study of anti-GPC3 chimeric antigen receptor modified T cells (GPC3 CAR-T) in Chinese patients with refractory or relapsed GPC3 + hepatocellular carcinoma (r/r GPC3 + HCC). J Clin Oncol 35(suppl; abstr):3049Google Scholar
  4. 4.
    Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR, Khare PD, Thorn M, Ma Q, Stainken BF, Assanah EO, Davies R, Espat NJ, Junghans RP (2015) Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA + liver metastases. Clin Cancer Res 21(14):3149–3159.  https://doi.org/10.1158/1078-0432.CCR-14-1421 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhang C, Wang Z, Yang Z, Wang M, Li S, Li Y, Zhang R, Xiong Z, Wei Z, Shen J, Luo Y, Zhang Q, Liu L, Qin H, Liu W, Wu F, Chen W, Pan F, Zhang X, Bie P, Liang H, Pecher G, Qian C (2017) Phase I escalating-dose trial of CAR-T therapy targeting CEA + metastatic colorectal cancers. Mol Ther 25(5):1248–1258.  https://doi.org/10.1016/j.ymthe.2017.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu X, Ranganathan R, Jiang S, Fang C, Sun J, Kim S, Newick K, Lo A, June CH, Zhao Y, Moon EK (2016) A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res 76(6):1578–1590.  https://doi.org/10.1158/0008-5472.CAN-15-2524 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, Marson A (2017) CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep 7(1):737.  https://doi.org/10.1038/s41598-017-00462-8 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wong RM, Scotland RR, Lau RL, Wang C, Korman AJ, Kast WM, Weber JS (2007) Programmed death-1 blockade enhances expansion and functional capacity of human melanoma antigen-specific CTLs. Int Immunol 19(10):1223–1234.  https://doi.org/10.1093/intimm/dxm091 CrossRefPubMedGoogle Scholar
  10. 10.
    Wu K, Kryczek I, Chen L, Zou W, Welling TH (2009) Kupffer cell suppression of CD8 + T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res 69(20):8067–8075.  https://doi.org/10.1158/0008-5472.can-09-0901 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, Rosenberg SA (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114(8):1537–1544.  https://doi.org/10.1182/blood-2008-12-195792 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454.  https://doi.org/10.1056/NEJMoa1200690 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, Larkin J, Lorigan P, Neyns B, Blank CU, Hamid O, Mateus C, Shapira-Frommer R, Kosh M, Zhou H, Ibrahim N, Ebbinghaus S, Ribas A (2015) Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532.  https://doi.org/10.1056/NEJMoa1503093 CrossRefPubMedGoogle Scholar
  14. 14.
    Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Aren Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135.  https://doi.org/10.1056/NEJMoa1504627 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL, Shen X, Boyd Z, Hegde PS, Chen DS, Vogelzang NJ (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515(7528):558–562.  https://doi.org/10.1038/nature13904 CrossRefPubMedGoogle Scholar
  16. 16.
    Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, Mulder GE, Toebes M, Vesely MD, Lam SS, Korman AJ, Allison JP, Freeman GJ, Sharpe AH, Pearce EL, Schumacher TN, Aebersold R, Rammensee HG, Melief CJ, Mardis ER, Gillanders WE, Artyomov MN, Schreiber RD (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515(7528):577–581.  https://doi.org/10.1038/nature13988 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pauken KE, Wherry EJ (2015) Overcoming T cell exhaustion in infection and cancer. Trends Immunol 36(4):265–276.  https://doi.org/10.1016/j.it.2015.02.008 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22(5):589–594.  https://doi.org/10.1038/nbt957 CrossRefPubMedGoogle Scholar
  19. 19.
    Hsu CY, Uludag H (2012) A simple and rapid nonviral approach to efficiently transfect primary tissue-derived cells using polyethylenimine. Nat Protoc 7(5):935–945.  https://doi.org/10.1038/nprot.2012.038 CrossRefPubMedGoogle Scholar
  20. 20.
    Kim JH, Lee SR, Li LH, Park HJ, Park JH, Lee KY, Kim MK, Shin BA, Choi SY (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6(4):e18556.  https://doi.org/10.1371/journal.pone.0018556 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    van der Neut Kolfschoten M, Schuurman J, Losen M, Bleeker WK, Martinez-Martinez P, Vermeulen E, den Bleker TH, Wiegman L, Vink T, Aarden LA, De Baets MH, van de Winkel JG, Aalberse RC, Parren PW (2007) Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317(5844):1554–1557.  https://doi.org/10.1126/science.1144603 CrossRefPubMedGoogle Scholar
  22. 22.
    Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4(6):1633–1649.  https://doi.org/10.1002/pmic.200300771 CrossRefPubMedGoogle Scholar
  23. 23.
    Hart GW (1997) Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu Rev Biochem 66:315–335.  https://doi.org/10.1146/annurev.biochem.66.1.315 CrossRefPubMedGoogle Scholar
  24. 24.
    Shindo G, Endo T, Onda M, Goto S, Miyamoto Y, Kaneko T (2013) Is the CD4/CD8 ratio an effective indicator for clinical estimation of adoptive immunotherapy for cancer treatment? JCT 4(8):1382–1390.  https://doi.org/10.4236/jct.2013.48164 CrossRefGoogle Scholar
  25. 25.
    Geginat J, Lanzavecchia A, Sallusto F (2003) Proliferation and differentiation potential of human CD8 + memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 101(11):4260–4266.  https://doi.org/10.1182/blood-2002-11-3577 CrossRefPubMedGoogle Scholar
  26. 26.
    Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25(21):9543–9553.  https://doi.org/10.1128/mcb.25.21.9543-9553.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chapuis AG, Ragnarsson GB, Nguyen HN, Chaney CN, Pufnock JS, Schmitt TM, Duerkopp N, Roberts IM, Pogosov GL, Ho WY, Ochsenreither S, Wolfl M, Bar M, Radich JP, Yee C, Greenberg PD (2013) Transferred WT1-reactive CD8 + T cells can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med 5(174):174ra127.  https://doi.org/10.1126/scitranslmed.3004916 CrossRefGoogle Scholar
  28. 28.
    Scarfo I, Maus MV (2017) Current approaches to increase CAR T cell potency in solid tumors: targeting the tumor microenvironment. J Immunother Cancer 5:28.  https://doi.org/10.1186/s40425-017-0230-9 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM, Chow MT, Smyth MJ, Kershaw MH, Darcy PK (2013) Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 19(20):5636–5646.  https://doi.org/10.1158/1078-0432.CCR-13-0458 CrossRefPubMedGoogle Scholar
  30. 30.
    Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, Postow MA, Wolchok JD (2015) Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 26(12):2375–2391.  https://doi.org/10.1093/annonc/mdv383 PubMedGoogle Scholar
  31. 31.
    Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y (2017) Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 23(9):2255–2266.  https://doi.org/10.1158/1078-0432.CCR-16-1300 CrossRefPubMedGoogle Scholar
  32. 32.
    Odorizzi PM, Pauken KE, Paley MA, Sharpe A, Wherry EJ (2015) Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8 + T cells. J Exp Med 212(7):1125–1137.  https://doi.org/10.1084/jem.20142237 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schaefer KA, Wu WH, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB (2017) Unexpected mutations after CRISPR-Cas9 editing in vivo. Nat Methods 14(6):547–548.  https://doi.org/10.1038/nmeth.4293 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, Sadelain M, Adusumilli PS (2016) Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 126(8):3130–3144.  https://doi.org/10.1172/jci83092 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Suarez ER, Chang de K, Sun J, Sui J, Freeman GJ, Signoretti S, Zhu Q, Marasco WA (2016) Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget 7(23):34341–34355.  https://doi.org/10.18632/oncotarget.9114 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Li S, Siriwon N, Zhang X, Yang S, Jin T, He F, Kim YJ, Mac J, Lu Z, Wang S, Han X, Wang P (2017) Enhanced cancer immunotherapy by chimeric antigen receptor-modified T cells engineered to secrete checkpoint inhibitors. Clin Cancer Res 15(22):6982–6992.  https://doi.org/10.1158/1078-0432.CCR-17-0867 23) .CrossRefGoogle Scholar
  37. 37.
    Tang X, Li Q, Zhu Y, Zheng D, Dai J, Ni W, Wei J, Xue Y, Chen K, Hou W, Zhang C, Feng X, Liang Y (2015) The advantages of PD1 activating chimeric receptor (PD1-ACR) engineered lymphocytes for PDL1(+) cancer therapy. Am J Transl Res 7(3):460–473PubMedPubMedCentralGoogle Scholar
  38. 38.
    Kobold S, Grassmann S, Chaloupka M, Lampert C, Wenk S, Kraus F, Rapp M, Duwell P, Zeng Y, Schmollinger JC, Schnurr M, Endres S, Rothenfusser S (2015) Impact of a new fusion receptor on PD-1-mediated immunosuppression in adoptive T cell therapy. J Natl Cancer Inst 107(8).  https://doi.org/10.1093/jnci/djv146
  39. 39.
    Donskov F, Marcussen N, Hokland M, Fisker R, Madsen HH, von der Maase H (2004) In vivo assessment of the antiproliferative properties of interferon-alpha during immunotherapy: Ki-67 (MIB-1) in patients with metastatic renal cell carcinoma. Br J Cancer 90(3):626–631.  https://doi.org/10.1038/sj.bjc.6601587 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bourouba M, Zergoun AA, Maffei JS, Chila D, Djennaoui D, Asselah F, Amir-Tidadini ZC, Touil-Boukoffa C, Zaman MH (2015) TNFalpha antagonization alters NOS2 dependent nasopharyngeal carcinoma tumor growth. Cytokine 74(1):157–163.  https://doi.org/10.1016/j.cyto.2015.04.003 CrossRefPubMedGoogle Scholar
  41. 41.
    Jiang Y, Li Y, Zhu B (2015) T-cell exhaustion in the tumor microenvironment. Cell Death Dis 6:e1792.  https://doi.org/10.1038/cddis.2015.162 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, Zhou J, Li BZ, Shi YH, Xiao YS, Xu Y, Fan J (2009) Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res 15(3):971–979.  https://doi.org/10.1158/1078-0432.CCR-08-1608 CrossRefPubMedGoogle Scholar
  43. 43.
    Kuang DM, Zhao QY, Peng C, Xu J, Zhang JP, Wu CY, Zheng LM (2009) Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 206(6):1327–1337.  https://doi.org/10.1084/jem.20082173 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Shi F, Shi M, Zeng Z, Qi R-Z, Liu Z-W, Zhang J-Y, Yang Y-P, Tien P, Wang F-S (2011) PD-1 and PD-L1 upregulation promotes CD8+ T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J Cancer 128:887–896.  https://doi.org/10.1002/ijc.25397 CrossRefPubMedGoogle Scholar
  45. 45.
    El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling THR, Meyer T, Kang YK, Yeo W, Chopra A, Anderson J, Dela Cruz C, Lang L, Neely J, Tang H, Dastani HB, Melero I (2017) Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389(10088):2492–2502.  https://doi.org/10.1016/S0140-6736(17)31046-2 CrossRefPubMedGoogle Scholar
  46. 46.
    Swaika A, Hammond WA, Joseph RW (2015) Current state of anti-PD-L1 and anti-PD-1 agents in cancer therapy. Mol Immunol 67(2 Pt A):4–17.  https://doi.org/10.1016/j.molimm.2015.02.009 CrossRefPubMedGoogle Scholar
  47. 47.
    Collins LK, Chapman MS, Carter JB, Samie FH (2017) Cutaneous adverse effects of the immune checkpoint inhibitors. Curr Probl Cancer 41(2):125–128.  https://doi.org/10.1016/j.currproblcancer.2016.12.001 CrossRefPubMedGoogle Scholar
  48. 48.
    Bi Y, Jiang H, Wang P, Song B, Wang H, Kong X, Li Z (2017) Treatment of hepatocellular carcinoma with a GPC3-targeted bispecific T cell engager. Oncotarget 8(32):52866–52876.  https://doi.org/10.18632/oncotarget.17905 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zeyan Pan
    • 1
  • Shengmeng Di
    • 1
  • Bizhi Shi
    • 1
  • Hua Jiang
    • 1
  • Zhimin Shi
    • 2
  • Ying Liu
    • 1
  • Yi Wang
    • 1
  • Hong Luo
    • 1
  • Min Yu
    • 1
  • Xiuqi Wu
    • 1
  • Zonghai Li
    • 1
    • 2
  1. 1.State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji HospitalShanghai Jiaotong University School of MedicineShanghaiChina
  2. 2.CARsgen TherapeuticsShanghaiChina

Personalised recommendations