Depleted polymorphonuclear leukocytes in human metastatic liver reflect an altered immune microenvironment associated with recurrent metastasis

  • Fiona Hand
  • Cathal Harmon
  • Louise A. Elliott
  • Francesco Caiazza
  • Aonghus Lavelle
  • Donal Maguire
  • Emir Hoti
  • Niamh Nolan
  • Justin G. Geoghegan
  • Elizabeth J. Ryan
  • Cliona O’Farrelly
Original Article

Abstract

Background

Hepatic immunity, normally protective against neoplasia, is subverted in colorectal liver metastasis (CRLM). Here, we compare the inflammatory microenvironment of CRLM-bearing liver tissue to donor liver.

Methods

Twenty-five patients undergoing resection for CRLM were recruited, 13 of whom developed intrahepatic recurrence within 18 months. Biopsies were obtained from tumour and normal liver tissue adjacent to and distal from, the tumour. Donor liver biopsies were obtained during transplantation. Biopsies were cultured and conditioned media (CM) screened for 102 inflammatory mediators. Twelve of these were validated by Luminex assay. Transwell assays measured cancer cell chemotaxis. Polymorphonuclear leukocytes (PMN) and lymphocytes were quantified in H&E sections.

Results

Fewer periportal tissue-resident PMN were present in metastatic liver compared to donor liver. Patients with the fewest PMN in liver tissue distal to their tumour had a shorter time to intrahepatic recurrence (P < 0.001). IL-6, CXCL1, CXCL5, G-CSF, GM-CSF, VEGF, LIF, and CCL3 were higher in liver-bearing CRLM compared to donor tissue. Consequently, cancer cells migrated equally towards CM of all regions of metastatic liver but not towards donor liver CM.

Conclusions

The local inflammatory environment may affect both immune cell infiltration and cancer cell migration contributing to recurrence following resection for CRLM.

Keywords

Leukocytes Colorectal liver metastases Immune microenvironment Tumour progression 

Abbreviations

CCL

Chemokine (C–C motif) ligand

CM

Conditioned media

CRC

Colorectal cancer,

CRLM

Colorectal liver metastases,

CXCL

Chemokine (C-X-C motif) ligand

DPP4

Dipeptidyl peptidase-4

HPF

High-powered field

LIF

Leukemia inhibitory factor

MIF

Macrophage migration inhibitory factor

NLR

Neutrophil-to-lymphocyte ratio

PMN

Polymorphonuclear leukocytes

VEGF

Vascular endothelial growth factor

Notes

Author contributions

FH: study design and conception, data collection, analysis and interpretation, drafted, reviewed, edited, and approved manuscript. CH: study design and conception, data analysis and interpretation, drafted, and approved manuscript. LAE: data collection and analysis, and reviewed and approved manuscript. FC: data collection and analysis, and reviewed and approved manuscript. AL: data analysis, and reviewed and approved manuscript. DM: provided clinical samples, and reviewed and approved manuscript. EH: provided clinical samples, and reviewed and approved manuscript. NN: data collection and analysis, and reviewed and approved manuscript. JGG: study design and conception, provided clinical samples, and reviewed and approved manuscript. EJR: study conception, design and supervision, data collection, and analysis, and drafted and approved manuscript. CO’F: study conception, design and supervision, and drafted and approved manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval and ethical standards

All protocols were approved by St. Vincent’s University Hospital Ethics Committee in accordance with the ethical guidelines of the 1975 Declaration of Helsinki.

Informed consent

Informed consent was provided by all patients prior to undergoing resection. A patient information leaflet was provided and all queries addressed by F. Hand before consent was provided. Where donor liver was obtained, informed consent was given by the donor’s family prior to sampling. Donor families were approached by a dedicated transplant coordinator. All protocols and study information were provided to the family prior to consenting.

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386.  https://doi.org/10.1002/ijc.29210 CrossRefPubMedGoogle Scholar
  2. 2.
    Sethi N, Kang Y (2011) Unravelling the complexity of metastasis—molecular understanding and targeted therapies. Nat Rev Cancer 11(10):735–748.  https://doi.org/10.1038/nrc3125 CrossRefPubMedGoogle Scholar
  3. 3.
    Disibio G, French SW (2008) Metastatic patterns of cancers: results from a large autopsy study. Arch Pathol Lab Med 132(6):931-9. https://doi.org/10.1043/1543-2165(2008)132[931:MPOCRF]2.0.CO;2PubMedGoogle Scholar
  4. 4.
    Nathan H, de Jong MC, Pulitano C, Ribero D, Strub J, Mentha G, Gigot JF, Schulick RD, Choti MA, Aldrighetti L, Capussotti L, Pawlik TM (2010) Conditional survival after surgical resection of colorectal liver metastasis: an international multi-institutional analysis of 949 patients. J Am Coll Surg 210(5):755–764.  https://doi.org/10.1016/j.jamcollsurg.2009.12.041 CrossRefPubMedGoogle Scholar
  5. 5.
    Hugen N, van de Velde CJ, de Wilt JH, Nagtegaal ID (2014) Metastatic pattern in colorectal cancer is strongly influenced by histological subtype. Ann Oncol 25(3):651–657.  https://doi.org/10.1093/annonc/mdt591 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wurster EF, Tenckhoff S, Probst P, Jensen K, Dölger E, Knebel P, Diener MK, Büchler MW, Ulrich A (2017) A systematic review and meta-analysis of the utility of repeated versus single hepatic resection for colorectal cancer liver metastases. HPB (Oxford) 19(6):491–497.  https://doi.org/10.1016/j.hpb.2017.02.440 CrossRefGoogle Scholar
  7. 7.
    Saiura A, Yamamoto J, Koga R, Takahashi Y, Takahashi M, Inoue Y, Ono Y, Kokudo N (2014) Favorable outcome after repeat resection for colorectal liver metastases. Ann Surg Oncol 21(13):4293–4299.  https://doi.org/10.1245/s10434-014-3863-7 CrossRefPubMedGoogle Scholar
  8. 8.
    Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480(7378):480–489.  https://doi.org/10.1038/nature10673 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chen ZY, Raghav K, Lieu CH, Jiang ZQ, Eng C, Vauthey JN, Chang GJ, Qiao W, Morris J, Hong D, Hoff P, Tran H, Menter DG, Heymach J, Overman M, Kopetz S (2015) Cytokine profile and prognostic significance of high neutrophil-lymphocyte ratio in colorectal cancer. Br J Cancer 112(6):1088–1097.  https://doi.org/10.1038/bjc.2015.61 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Robinson MW, Harmon C, O’Farrelly C (2016) Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 13(3):267–276.  https://doi.org/10.1038/cmi.2016.3 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Albillos A, Lario M, Álvarez-Mon M (2014) Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J Hepatol 61(6):1385–1396.  https://doi.org/10.1016/j.jhep.2014.08.010 CrossRefPubMedGoogle Scholar
  12. 12.
    Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022.  https://doi.org/10.1038/ni.2703 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Anders HJ, Romagnani P, Mantovani A (2014) Pathomechanisms: homeostatic chemokines in health, tissue regeneration, and progressive diseases. Trends Mol Med 20(3):154–165.  https://doi.org/10.1016/j.molmed.2013.12.002 CrossRefPubMedGoogle Scholar
  14. 14.
    Eggert T, Wolter K, Ji J, Ma C, Yevsa T, Klotz S, Medina-Echeverz J, Longerich T, Forgues M, Reisinger F, Heikenwalder M, Wang XW, Zender L, Greten TF (2016) Distinct Functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 30(4):533–547.  https://doi.org/10.1016/j.ccell.2016.09.003 CrossRefPubMedGoogle Scholar
  15. 15.
    Kelly AM, Golden-Mason L, McEntee G, Traynor O, Doherty DG, Hegarty JE, O’Farrelly C (2004) Interleukin 12 (IL-12) is increased in tumour bearing human liver and expands CD8(+) and CD56(+) T cells in vitro but not in vivo. Cytokine 25(6):273–282.  https://doi.org/10.1016/j.cyto.2003.11.012 CrossRefPubMedGoogle Scholar
  16. 16.
    Kelly AM, Golden-Mason L, Traynor O, Geoghegan J, McEntee G, Hegarty JE, O’Farrelly C (2006) Changes in hepatic immunoregulatory cytokines in patients with metastatic colorectal carcinoma: implications for hepatic anti-tumour immunity. Cytokine 35(3–4):171–179.  https://doi.org/10.1016/j.cyto.2006.07.019 CrossRefPubMedGoogle Scholar
  17. 17.
    O’Toole A, Michielsen AJ, Nolan B, Tosetto M, Sheahan K, Mulcahy HE, Winter DC, Hyland JM, O’Connell PR, Fennelly D, O’Donoghue D, O’Sullivan J, Doherty GA, Ryan EJ (2014) Tumour microenvironment of both early- and late-stage colorectal cancer is equally immunosuppressive. Br J Cancer 111(5):927–932.  https://doi.org/10.1038/bjc.2014.367 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Michielsen AJ, Hogan AE, Marry J, Tosetto M, Cox F, Hyland JM, Sheahan KD, O’Donoghue DP, Mulcahy HE, Ryan EJ, O’Sullivan JN (2011) Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer. PLoS One 6(11):e27944.  https://doi.org/10.1371/journal.pone.0027944 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Weiskirchen R, Tacke F (2014) Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg Nutr 3(6):344–363.  https://doi.org/10.3978/j.issn.2304-3881.2014.11.03 PubMedPubMedCentralGoogle Scholar
  20. 20.
    Harmon C, Robinson MW, Fahey R, Whelan S, Houlihan DD, Geoghegan J, O’Farrelly C (2016) Tissue-resident Eomes(hi) T-bet(lo) CD56(bright) NK cells with reduced proinflammatory potential are enriched in the adult human liver. Eur J Immunol 46(9):2111–2120.  https://doi.org/10.1002/eji.201646559 CrossRefPubMedGoogle Scholar
  21. 21.
    dos Santos AC, Barsante MM, Arantes RM, Bernard CC, Teixeira MM, Carvalho-Tavares J (2005) CCL2 and CCL5 mediate leukocyte adhesion in experimental autoimmune encephalomyelitis—an intravital microscopy study. J Neuroimmunol 162(1–2):122–129.  https://doi.org/10.1016/j.jneuroim.2005.01.020 CrossRefPubMedGoogle Scholar
  22. 22.
    Vilela MC, Mansur DS, Lacerda-Queiroz N, Rodrigues DH, Lima GK, Arantes RM, Kroon EG, da Silva Campos MA, Teixeira MM, Teixeira AL (2009) The chemokine CCL5 is essential for leukocyte recruitment in a model of severe Herpes simplex encephalitis. Ann N Y Acad Sci 1153:256–263.  https://doi.org/10.1111/j.1749-6632.2008.03959.x CrossRefPubMedGoogle Scholar
  23. 23.
    Muthuswamy R, Berk E, Junecko BF, Zeh HJ, Zureikat AH, Normolle D, Luong TM, Reinhart TA, Bartlett DL, Kalinski P (2012) NF-κB hyperactivation in tumor tissues allows tumor-selective reprogramming of the chemokine microenvironment to enhance the recruitment of cytolytic T effector cells. Cancer Res 72(15):3735–3743.  https://doi.org/10.1158/0008-5472.CAN-11-4136 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 1843(11):2563–2582.  https://doi.org/10.1016/j.bbamcr.2014.05.014 CrossRefPubMedGoogle Scholar
  25. 25.
    Dupaul-Chicoine J, Arabzadeh A, Dagenais M, Douglas T, Champagne C, Morizot A, Rodrigue-Gervais IG, Breton V, Colpitts SL, Beauchemin N, Saleh M (2015) The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity. Immunity 43(4):751–763.  https://doi.org/10.1016/j.immuni.2015.08.013 CrossRefPubMedGoogle Scholar
  26. 26.
    Brackett CM, Kojouharov B, Veith J, Greene KF, Burdelya LG, Gollnick SO, Abrams SI, Gudkov AV (2016) Toll-like receptor-5 agonist, entolimod, suppresses metastasis and induces immunity by stimulating an NK-dendritic-CD8 + T-cell axis. Proc Natl Acad Sci USA 113(7):E874–83.  https://doi.org/10.1073/pnas.1521359113 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    White DA, Su Y, Kanellakis P, Kiriazis H, Morand EF, Bucala R, Dart AM, Gao XM, Du XJ (2014) Differential roles of cardiac and leukocyte derived macrophage migration inhibitory factor in inflammatory responses and cardiac remodelling post myocardial infarction. J Mol Cell Cardiol 69:32–42.  https://doi.org/10.1016/j.yjmcc.2014.01.015 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wagner L, Klemann C, Stephan M, von Hörsten S (2016) Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins. Clin Exp Immunol 184(3):265–283.  https://doi.org/10.1111/cei.12757 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Moschen AR, Adolph TE, Gerner RR, Wieser V, Tilg H (2017) Lipocalin-2: a master mediator of intestinal and metabolic inflammation. Trends Endocrinol Metab 28(5):388–397.  https://doi.org/10.1016/j.tem.2017.01.003 CrossRefPubMedGoogle Scholar
  30. 30.
    Zhou SL, Dai Z, Zhou ZJ, Wang XY, Yang GH, Wang Z, Huang XW, Fan J, Zhou J (2012) Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology 56(6):2242-54.  https://doi.org/10.1002/hep.25907 CrossRefPubMedGoogle Scholar
  31. 31.
    Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194.  https://doi.org/10.1016/j.ccr.2009.06.017 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51.  https://doi.org/10.1016/j.cell.2010.03.014 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Halama N, Zoernig I, Berthel A, Kahlert C, Klupp F, Suarez-Carmona M, Suetterlin T, Brand K, Krauss J, Lasitschka F, Lerchl T, Luckner-Minden C, Ulrich A, Koch M, Weitz J, Schneider M, Buechler MW, Zitvogel L, Herrmann T, Benner A, Kunz C, Luecke S, Springfeld C, Grabe N, Falk CS, Jaeger D (2016) Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients. Cancer Cell 29(4):587–601.  https://doi.org/10.1016/j.ccell.2016.03.005 CrossRefPubMedGoogle Scholar
  34. 34.
    Furze RC, Rankin SM (2008) Neutrophil mobilization and clearance in the bone marrow. Immunology 125(3):281–288.  https://doi.org/10.1111/j.1365-2567.2008.02950.x CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ahuja N, Andres-Hernando A, Altmann C, Bhargava R, Bacalja J, Webb RG, He Z, Edelstein CL, Faubel S (2012) Circulating IL-6 mediates lung injury via CXCL1 production after acute kidney injury in mice. Am J Physiol Renal Physiol 303(6):F864-72.  https://doi.org/10.1152/ajprenal.00025.2012 CrossRefPubMedGoogle Scholar
  36. 36.
    Asfaha S, Dubeykovskiy AN, Tomita H, Yang X, Stokes S, Shibata W, Friedman RA, Ariyama H, Dubeykovskaya ZA, Muthupalani S, Ericksen R, Frucht H, Fox JG, Wang TC (2013) Mice that express human interleukin-8 have increased mobilization of immature myeloid cells, which exacerbates inflammation and accelerates colon carcinogenesis. Gastroenterology 144(1):155–166.  https://doi.org/10.1053/j.gastro.2012.09.057 CrossRefPubMedGoogle Scholar
  37. 37.
    Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11(8):519–531.  https://doi.org/10.1038/nri3024 CrossRefPubMedGoogle Scholar
  38. 38.
    Lee YS, Choi I, Ning Y, Kim NY, Khatchadourian V, Yang D, Chung HK, Choi D, LaBonte MJ, Ladner RD, Nagulapalli Venkata KC, Rosenberg DO, Petasis NA, Lenz HJ, Hong YK (2012) Interleukin-8 and its receptor CXCR2 in the tumour microenvironment promote colon cancer growth, progression and metastasis. Br J Cancer 106(11):1833–1841.  https://doi.org/10.1038/bjc.2012.177 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wang D, Sun H, Wei J, Cen B, DuBois RN (2017) CXCL1 is critical for pre-metastatic niche formation and metastasis in colorectal cancer. Cancer Res 77(13):3655–3665.  https://doi.org/10.1158/0008-5472.CAN-16-3199 CrossRefPubMedGoogle Scholar
  40. 40.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoué F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pagès F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964.  https://doi.org/10.1126/science.1129139 CrossRefPubMedGoogle Scholar
  41. 41.
    Pugh SA, Harrison RJ, Primrose JN, Khakoo SI (2014) T cells but not NK cells are associated with a favourable outcome for resected colorectal liver metastases. BMC Cancer.  https://doi.org/10.1186/1471-2407-14-180 Google Scholar
  42. 42.
    Berthel A, Zoernig I, Valous NA, Kahlert C, Klupp F, Ulrich A, Weitz J, Jaeger D, Halama N (2017) Detailed resolution analysis reveals spatial T cell heterogeneity in the invasive margin of colorectal cancer liver metastases associated with improved survival. Oncoimmunology 6(3):e1286436.  https://doi.org/10.1080/2162402X.2017.1286436 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jaillon S, Galdiero MR, Del Prete D, Cassatella MA, Garlanda C, Mantovani A (2013) Neutrophils in innate and adaptive immunity. Semin Immunopathol 35(4):377–394.  https://doi.org/10.1007/s00281-013-0374-8 CrossRefPubMedGoogle Scholar
  44. 44.
    Galdiero MR, Bianchi P, Grizzi F, Di Caro G, Basso G, Ponzetta A, Bonavita E, Barbagallo M, Tartari S, Polentarutti N, Malesci A, Marone G, Roncalli M, Laghi L, Garlanda C, Mantovani A, Jaillon S (2016) Occurrence and significance of tumor-associated neutrophils in patients with colorectal cancer. Int J Cancer 139(2):446–456.  https://doi.org/10.1002/ijc.30076 CrossRefPubMedGoogle Scholar
  45. 45.
    Wculek SK, Malanchi I (2015) Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528(7582):413–417.  https://doi.org/10.1038/nature16140 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, Wang Y, Simmons RL, Huang H, Tsung A (2016) Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res 76(6):1367–1380.  https://doi.org/10.1158/0008-5472.CAN-15-1591 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Treffers LW, Hiemstra IH, Kuijpers TW, van den Berg TK, Matlung HL (2016) Neutrophils in cancer. Immunol Rev 273(1):312–328.  https://doi.org/10.1111/imr.12444 CrossRefPubMedGoogle Scholar
  48. 48.
    Fridlender ZG, Albelda SM (2012) Tumor-associated neutrophils: friend or foe? Carcinogenesis 33(5):949 – 55.  https://doi.org/10.1093/carcin/bgs123 CrossRefPubMedGoogle Scholar
  49. 49.
    Mishalian I, Bayuh R, Eruslanov E, Michaeli J, Levy L, Zolotarov L, Singhal S, Albelda SM, Granot Z, Fridlender ZG (2014) Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17—a new mechanism of impaired antitumor immunity. Int J Cancer 135(5):1178–1186.  https://doi.org/10.1002/ijc.28770 CrossRefPubMedGoogle Scholar
  50. 50.
    Shaul ME, Levy L, Sun J, Mishalian I, Singhal S, Kapoor V, Horng W, Fridlender G, Albelda SM, Fridlender ZG (2016) Tumor-associated neutrophils display a distinct N1 profile following TGFβ modulation: a transcriptomics analysis of pro- vs. antitumor TANs. Oncoimmunology 5(11):e1232221.  https://doi.org/10.1080/2162402X.2016.1232221 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, Lugli A, Zlobec I, Hartmann A, Bifulco C, Nagtegaal ID, Palmqvist R, Masucci GV, Botti G, Tatangelo F, Delrio P, Maio M, Laghi L, Grizzi F, Asslaber M, D’Arrigo C, Vidal-Vanaclocha F, Zavadova E, Chouchane L, Ohashi PS, Hafezi-Bakhtiari S, Wouters BG, Roehrl M, Nguyen L, Kawakami Y, Hazama S, Okuno K, Ogino S, Gibbs P, Waring P, Sato N, Torigoe T, Itoh K, Patel PS, Shukla SN, Wang Y, Kopetz S, Sinicrope FA, Scripcariu V, Ascierto PA, Marincola FM, Fox BA, Pagès F (2014) Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol 232(2):199–209.  https://doi.org/10.1002/path.4287 CrossRefPubMedGoogle Scholar
  52. 52.
    Kirilovsky A, Marliot F, El Sissy C, Haicheur N, Galon J, Pagès F (2016) Rational bases for the use of the Immunoscore in routine clinical settings as a prognostic and predictive biomarker in cancer patients. Int Immunol 28(8):373–382.  https://doi.org/10.1093/intimm/dxw021 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kwak Y, Koh J, Kim DW, Kang SB, Kim WH, Lee HS (2016) Immunoscore encompassing CD3+ and CD8+ T cell densities in distant metastasis is a robust prognostic marker for advanced colorectal cancer. Oncotarget 7(49):81778–81790.  https://doi.org/10.18632/oncotarget.13207 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Proctor MJ, Talwar D, Balmar SM, O’Reilly DS, Foulis AK, Horgan PG, Morrison DS, McMillan DC (2010) The relationship between the presence and site of cancer, an inflammation-based prognostic score and biochemical parameters. Initial results of the Glasgow Inflammation Outcome Study. Br J Cancer 103(6):870–876.  https://doi.org/10.1038/sj.bjc.6605855 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Tang H, Li B, Zhang A, Lu W, Xiang C, Dong J (2016) Prognostic Significance of Neutrophil-to-Lymphocyte Ratio in Colorectal Liver Metastasis: A Systematic Review and Meta-Analysis. PLoS One 11(7):e0159447.  https://doi.org/10.1371/journal.pone.0159447 (eCollection 2016) CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fiona Hand
    • 1
    • 2
  • Cathal Harmon
    • 2
  • Louise A. Elliott
    • 3
  • Francesco Caiazza
    • 3
  • Aonghus Lavelle
    • 3
  • Donal Maguire
    • 1
  • Emir Hoti
    • 1
  • Niamh Nolan
    • 1
  • Justin G. Geoghegan
    • 1
  • Elizabeth J. Ryan
    • 3
  • Cliona O’Farrelly
    • 2
  1. 1.National Liver UnitSt. Vincent’s HospitalDublin 4Ireland
  2. 2.School of Biochemistry and Immunology and School of Medicine, Trinity Biomedical Sciences InstituteTrinity College DublinDublin 2Ireland
  3. 3.Centre for Colorectal Disease, School of MedicineUniversity College Dublin and St. Vincent’s HospitalDublin 4Ireland

Personalised recommendations