Cancer Immunology, Immunotherapy

, Volume 67, Issue 3, pp 495–505 | Cite as

High PD-L1 expression indicates poor prognosis of HIV-infected patients with non-small cell lung cancer

  • Yusuke OkumaEmail author
  • Tsunekazu Hishima
  • Jumpei Kashima
  • Sadamu Homma
Original Article



The status of antitumor immunity represented by the expression of programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) and immune cell (IC) infiltration is unknown in HIV-infected patients with non-small cell lung cancer (NSCLC).


Fifteen HIV-infected patients with NSCLC were compared with 29 non-HIV-infected patients with NSCLC. Analysis of 13 propensity-score-matched patients in the two groups was also compared. The expression of PD-1/PD-L1 and tumor infiltration by CD4+, CD8+, and CD56+ immune cells were examined by immunohistochemistry; score of ≥ 2 was defined as positive.


Although high PD-L1 expression in tumor cells was observed in HIV and non-HIV cohorts, the association of PD-1/PD-L1 was significant only in the HIV cohort. In overall as well as the propensity-matched analyses, HIV-infected patients with high PD-L1 expression showed shorter survival than HIV-infected patients with low PD-L1 expression; no significant difference was observed in this respect in the non-HIV cohort.


High PD-L1 expression in tumor tissue was associated with poor prognosis in HIV-infected NSCLC patients but not in non-HIV-infected NSCLC patients. These results suggest that antitumor immunity by PD-1/PD-L1 axis might be suppressed more in HIV-infected NSCLC patients as compared to their non-HIV-infected counterparts.


HIV Non-small cell lung cancer (NSCLC) Immunohistochemistry PD-1 PD-L1 Immune cell infiltration 



Confidence interval


Eastern Cooperative Oncology Group


Epidermal growth factor receptor


Formalin-fixed paraffin-embedded


Immune cells




Non-AIDS defining cancers


Non-small cell lung cancer


Performance status


Tumor cells



The authors thank Dr. Makoto Saito, the Senior Biostatistician in the Office for Clinical Research Support in Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, for advice on statistical analyses. They also thank Masumi Ogawa, the Technical Staff of Department of Pathology in Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, for pathological procedures. The authors would like to acknowledge Enago ( for English language editing services.

Compliance with ethical standards

Conflict of interest

The author(s) declare that they have no competing interests.

Supplementary material

262_2017_2103_MOESM1_ESM.pdf (285 kb)
Supplementary material 1 (PDF 284 KB)


  1. 1.
    Schneider E, Whitmore S, Glynn KM, Dominguez K, Mitsch A, McKenna MT, Centers for Disease C, Prevention (2008) Revised surveillance case definitions for HIV infection among adults, adolescents, and children aged < 18 months and for HIV infection and AIDS among children aged 18 months to < 13 years—United States, 2008. MMWR Recomm Rep 57(RR-10):1–12Google Scholar
  2. 2.
    Engels EA, Brock MV, Chen J, Hooker CM, Gillison M, Moore RD (2006) Elevated incidence of lung cancer among HIV-infected individuals. J Clin Oncol 24(9):1383–1388CrossRefPubMedGoogle Scholar
  3. 3.
    Wistuba II, Behrens C, Milchgrub S, Virmani AK, Jagirdar J, Thomas B, Ioachim HL, Litzky LA, Brambilla EM, Minna JD, Gazdar AF (1998) Comparison of molecular changes in lung cancers in HIV-positive and HIV-indeterminate subjects. JAMA 279(19):1554–1559CrossRefPubMedGoogle Scholar
  4. 4.
    Lavole A, Chouaid C, Baudrin L, Wislez M, Raguin G, Pialoux G, Girard PM, Milleron B, Cadranel J (2009) Effect of highly active antiretroviral therapy on survival of HIV infected patients with non-small-cell lung cancer. Lung Cancer 65(3):345–350CrossRefPubMedGoogle Scholar
  5. 5.
    Sznol M, Chen L (2013) Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res 19(5):1021–1034CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Aren Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhaufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crino L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O’Brien M, Rao S, Hotta K, Leiby MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR, Investigators K- (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833CrossRefPubMedGoogle Scholar
  9. 9.
    Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M, Fidler MJ, de Castro G Jr, Garrido M, Lubiniecki GM, Shentu Y, Im E, Dolled-Filhart M, Garon EB (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387(10027):1540–1550CrossRefPubMedGoogle Scholar
  10. 10.
    Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, Cortinovis DL, Leach J, Polikoff J, Barrios C, Kabbinavar F, Frontera OA, De Marinis F, Turna H, Lee JS, Ballinger M, Kowanetz M, He P, Chen DS, Sandler A, Gandara DR, Group OAKS. (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389(10066):255–265CrossRefPubMedGoogle Scholar
  11. 11.
    Freeman GJ, Wherry EJ, Ahmed R, Sharpe AH (2006) Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J Exp Med 203(10):2223–2227CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, Braiteh F, Waterkamp D, He P, Zou W, Chen DS, Yi J, Sandler A, Rittmeyer A, Group PS (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387(10030):1837–1846CrossRefPubMedGoogle Scholar
  13. 13.
    Austin PC (2008) A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat Med 27(12):2037–2049CrossRefPubMedGoogle Scholar
  14. 14.
    Rosenbaum PR, Rubin DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70:41–55CrossRefGoogle Scholar
  15. 15.
    Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 276(11):889–897CrossRefPubMedGoogle Scholar
  16. 16.
    Nguyen ML, Farrell KJ, Gunthel CJ (2010) Non-AIDS-defining malignancies in patients with HIV in the HAART era. Curr Infect Dis Rep 12(1):46–55CrossRefPubMedGoogle Scholar
  17. 17.
    Hakimian R, Fang H, Thomas L, Edelman MJ (2007) Lung cancer in HIV-infected patients in the era of highly active antiretroviral therapy. J Thorac Oncol 2(4):268–272CrossRefPubMedGoogle Scholar
  18. 18.
    Rengan R, Mitra N, Liao K, Armstrong K, Vachani A (2012) Effect of HIV on survival in patients with non-small-cell lung cancer in the era of highly active antiretroviral therapy: a population-based study. Lancet Oncol 13(12):1203–1209CrossRefPubMedGoogle Scholar
  19. 19.
    Kaufmann DE, Walker BD (2009) PD-1 and CTLA-4 inhibitory cosignaling pathways in HIV infection and the potential for therapeutic intervention. J Immunol 182(10):5891–5897CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bowers NL, Helton ES, Huijbregts RP, Goepfert PA, Heath SL, Hel Z (2014) Immune suppression by neutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. PLoS Pathog 10(3):e1003993CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Spitsin S, Tustin NB, Riedel E, Tustin R 3rd, Murray JB, Peck LM, Khan M, Quinn J, Douglas SD (2012) Programmed death 1 receptor changes ex vivo in HIV-infected adults following initiation of highly active antiretroviral therapy. Clin Vaccine Immunol 19(5):752–756CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 2007 19(7):813–824CrossRefPubMedGoogle Scholar
  23. 23.
    Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhang Y, Wang L, Li Y, Pan Y, Wang R, Hu H, Li H, Luo X, Ye T, Sun Y, Chen H (2014) Protein expression of programmed death 1 ligand 1 and ligand 2 independently predict poor prognosis in surgically resected lung adenocarcinoma. Onco Targets Ther 7:567–573CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Velcheti V, Schalper KA, Carvajal DE, Anagnostou VK, Syrigos KN, Sznol M, Herbst RS, Gettinger SN, Chen L, Rimm DL (2014) Programmed death ligand-1 expression in non-small cell lung cancer. Lab Investig 94(1):107–116CrossRefPubMedGoogle Scholar
  27. 27.
    Mu CY, Huang JA, Chen Y, Chen C, Zhang XG (2011) High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol 28(3):682–688CrossRefPubMedGoogle Scholar
  28. 28.
    Trabattoni D, Saresella M, Biasin M, Boasso A, Piacentini L, Ferrante P, Dong H, Maserati R, Shearer GM, Chen L, Clerici M (2003) B7-H1 is up-regulated in HIV infection and is a novel surrogate marker of disease progression. Blood 101(7):2514–2520CrossRefPubMedGoogle Scholar
  29. 29.
    Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B, Boulassel MR, Delwart E, Sepulveda H, Balderas RS, Routy JP, Haddad EK, Sekaly RP (2006) Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med 12(10):1198–1202CrossRefPubMedGoogle Scholar
  30. 30.
    Platonova S, Cherfils-Vicini J, Damotte D, Crozet L, Vieillard V, Validire P, Andre P, Dieu-Nosjean MC, Alifano M, Regnard JF, Fridman WH, Sautes-Fridman C, Cremer I (2011) Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res 71(16):5412–5422CrossRefPubMedGoogle Scholar
  31. 31.
    Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, Mncube Z, Duraiswamy J, Zhu B, Eichbaum Q, Altfeld M, Wherry EJ, Coovadia HM, Goulder PJ, Klenerman P, Ahmed R, Freeman GJ, Walker BD (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443(7109):350–354CrossRefPubMedGoogle Scholar
  32. 32.
    Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL (2004) Cross-talk between activated human NK cells and CD4+ T cells via OX40–OX40 ligand interactions. J Immunol 173(6):3716–3724CrossRefPubMedGoogle Scholar
  33. 33.
    Frias M, Rivero-Juarez A, Gordon A, Camacho A, Cantisan S, Cuenca-Lopez F, Torre-Cisneros J, Pena J, Rivero A (2015) Persistence of pathological distribution of NK cells in HIV-infected patients with prolonged use of HAART and a sustained immune response. PLoS One 10(3):e0121019CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Divison of Oncology, Research Center for Medical SciencesThe Jikei University School of MedicineTokyoJapan
  2. 2.Department of Thoracic Oncology and Respiratory MedicineTokyo Metropolitan Cancer and Infectious diseases Center Komagome HospitalTokyoJapan
  3. 3.Department of PathologyTokyo Metropolitan Cancer and Infectious diseases Center Komagome HospitalTokyoJapan

Personalised recommendations