Skip to main content

Advertisement

Log in

A CD3-bispecific molecule targeting P-cadherin demonstrates T cell-mediated regression of established solid tumors in mice

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Strong evidence exists supporting the important role T cells play in the immune response against tumors. Still, the ability to initiate tumor-specific immune responses remains a challenge. Recent clinical trials suggest that bispecific antibody-mediated retargeted T cells are a promising therapeutic approach to eliminate hematopoietic tumors. However, this approach has not been validated in solid tumors. PF-06671008 is a dual-affinity retargeting (DART®)-bispecific protein engineered with enhanced pharmacokinetic properties to extend in vivo half-life, and designed to engage and activate endogenous polyclonal T cell populations via the CD3 complex in the presence of solid tumors expressing P-cadherin. This bispecific molecule elicited potent P-cadherin expression-dependent cytotoxic T cell activity across a range of tumor indications in vitro, and in vivo in tumor-bearing mice. Regression of established tumors in vivo was observed in both cell line and patient-derived xenograft models engrafted with circulating human T lymphocytes. Measurement of in vivo pharmacodynamic markers demonstrates PF-06671008-mediated T cell activation, infiltration and killing as the mechanism of tumor inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABC:

Antibodies bound per cell

APC:

Allophycocyanin

BiTE:

Bispecific T cell engager

bsAb:

Bispecific antibody

CHO:

Chinese hamster ovary

DART® :

Dual-affinity retargeting

LP-DART:

Half-life extended dual-affinity retargeting

NSG:

NOD scid gamma

PDX:

Patient-derived xenograft

PK:

Pharmacokinetic

RLU:

Relative light unit

References

  1. Zimmerman Z, Maniar T, Nagorsen D (2015) Unleashing the clinical power of T cells: CD19/CD3 bi-specific T cell engager (BiTE®) antibody construct blinatumomab as a potential therapy. Int Immunol 27:31–37

    Article  CAS  PubMed  Google Scholar 

  2. Moore PA, Zhang W, Rainey GJ, Burke S, Li H, Huang L et al (2011) Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood 117:4542–4551

    Article  CAS  PubMed  Google Scholar 

  3. Lameris R, de Bruin RC, Schneiders FL, en Henegouwen PMVB, Verheul HM, de Gruijl TD et al (2014) Bispecific antibody platforms for cancer immunotherapy. Crit Rev Oncol Hematol 92:153–165

    Article  PubMed  Google Scholar 

  4. Baeuerle PA, Reinhardt C (2009) Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res 69:4941–4944

    Article  CAS  PubMed  Google Scholar 

  5. Peralta Soler A, Knudsen KA, Salazar H, Han AC, Keshgegian AA (1999) P-cadherin expression in breast carcinoma indicates poor survival. Cancer 86:1263–1272

    Article  CAS  PubMed  Google Scholar 

  6. Paredes J, Albergaria A, Oliveira JT, Jerónimo C, Milanezi F, Schmitt FC (2005) P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clin Cancer Res 11:5869–5877

    Article  CAS  PubMed  Google Scholar 

  7. Turashvili G, McKinney SE, Goktepe O, Leung SC, Huntsman DG, Gelmon KA et al (2011) P-cadherin expression as a prognostic biomarker in a 3992 case tissue microarray series of breast cancer. Mod Pathol 24:64–81

    Article  CAS  PubMed  Google Scholar 

  8. Stefansson IM, Salvesen HB, Akslen LA (2004) Prognostic impact of alterations in P-cadherin expression and related cell adhesion markers in endometrial cancer. J Clin Oncol 22:1242–1252

    Article  CAS  PubMed  Google Scholar 

  9. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S et al (2008) Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res 14:5198–5208

    Article  CAS  PubMed  Google Scholar 

  10. Sun L, Hu H, Peng L, Zhou Z, Zhao X et al (2011) P-cadherin promotes liver metastasis and is associated with poor prognosis in colon cancer. Am J Pathol 179:380–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sakamoto K, Imai K, Higashi T, Taki K, Nakagawa S, Okabe H et al (2015) Significance of P-cadherin overexpression and possible mechanism of its regulation in intrahepatic cholangiocarcinoma and pancreatic cancer. Cancer Sci 106:1153–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Imai K, Hirata S, Irie A, Senju S, Ikuta Y, Yokomine K et al (2008) Identification of a novel tumor-associated antigen, cadherin 3/P-cadherin, as a possible target for immunotherapy of pancreatic, gastric, and colorectal cancers. Clin Cancer Res 14:6487–6495

    Article  CAS  PubMed  Google Scholar 

  13. Shimoyama Y, Hirohashi S, Hirano S, Noguchi M, Shimosato Y, Takeichi M et al (1989) Cadherin cell-adhesion molecules in human epithelial tissues and carcinomas. Cancer Res 49:2128–2133

    CAS  PubMed  Google Scholar 

  14. Root AR, Cao W, Li B, LaPan P, Meade C, Sanford J et al (2016) Development of PF-06671008, a highly potent anti-P-cadherin/anti-CD3 bispecific DART molecule with extended half-life for the treatment of cancer. Antibodies 5:6. doi:10.3390/antib5010006

    Article  Google Scholar 

  15. Zhang CC, Yan Z, Zhang Q, Kuszpit K, Zasadny K, Qiu M et al (2010) PF-03732010: a fully human monoclonal antibody against P-cadherin with antitumor and antimetastatic activity. Clin Cancer Res 16:5177–5188

    Article  CAS  PubMed  Google Scholar 

  16. Cebrian M, Yagüe E, Rincón M, López-Botet M, de Landázuri MO, Sánchez-Madrid F (1988) Triggering of T cell proliferation through AIM, an activation inducer molecule expressed on activated human lymphocytes. J Exp Med 168:1621–1637

    Article  CAS  PubMed  Google Scholar 

  17. Kwon BS, Weissman SM (1989) cDNA sequences of two inducible T-cell genes. Proc Natl Acad Sci USA 86:1963–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pollok KE, Kim YJ, Hurtado J, Zhou Z, Kim KK, Kwon BS (1994) 4-1BB T-cell antigen binds to mature B cells and macrophages, and costimulates anti-mu-primed splenic B cells. Eur J Immunol 24:367–374

    Article  CAS  PubMed  Google Scholar 

  19. DeBenedette MA, Shahinian A, Mak TW, Watts TH (1997) Costimulation of CD28- T lymphocytes by 4-1BB ligand. J Immunol 158:551–559

    CAS  PubMed  Google Scholar 

  20. Shuford WW, Klussman K, Tritchler DD, Loo DT, Chalupny J, Siadak AW et al (1997) 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med 186:47–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnson S, Burke S, Huang L, Gorlatov S, Li H, Wang W et al (2010) Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J Mol Biol 399:436–449

    Article  CAS  PubMed  Google Scholar 

  22. King MA, Covassin L, Brehm MA, Racki W, Pearson T, Leif J et al (2009) Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol 157:104–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chichili GR, Huang L, Li H, Burke S, He L, Tang Q et al (2015) A CD3 × CD123 bispecific DART for redirecting host T cells to myelogenous leukemia: preclinical activity and safety in nonhuman primates. Sci Transl Med 7:289ra82

    Article  PubMed  Google Scholar 

  24. Moore PA, Alderson R, Shah K, Yang Y, Burke S, Li H et al (2014) Development of MGD007, a gpA33 × CD3 bi-specific DART for T-cell immunotherapy of metastatic colorectal cancer. Cancer Res 74:669 (Abstract nr)

    Article  Google Scholar 

  25. De Vries E, Heinemann V, Fiedler WM, Seufferlein T, Verheul HMW, De Groot DJ et al (2015) Phase I study of AMG 211/MEDI-565 administered as continuous intravenous infusion for relapsed/refractory gastrointestinal (GI) adenocarcinoma. J Clin Oncol 33:TPS3097 (Abstract nr)

    Article  Google Scholar 

  26. Middleton MR, Steven NM, Evans TJ, Infante JR, Sznol M et al (2016) Safety, pharmacokinetics and efficacy of IMCgp100, a first-in-class soluble TCR-antiCD3 bispecific t cell redirector with solid tumour activity: Results from the FIH study in melanoma. J Clin Oncol 34:3016 (Abstract nr)

    Article  Google Scholar 

  27. Rathore B, Davol P, Rathore R, Cummings F, Birnbaum AE, Maizel A et al (2012) Trial of anti-CD3× anti-EGFR bispecific antibody (EGFRBi) in patients with EGFR-expressing recurrent/metastatic non-small cell lung cancer (NSCLC) and solid tumors. J Clin Oncol 30:e13124 (Abstract nr)

    Google Scholar 

  28. Fiedler WM, Wolf M, Kebenko M, Goebeler ME, Ritter B, Quaas A et al (2012) A phase I study of EpCAM/CD3-bispecific antibody (MT110) in patients with advanced solid tumors. J Clin Oncol 30:2504 (Abstract nr)

    Google Scholar 

  29. Tolcher AW, Alley EW, Chichili G, Baughman JE, Moore PA, Bonvini E et al (2016) Phase 1, first-in-human, open label, dose escalation study of MGD009, a humanized B7-H3 × CD3 dual-affinity re-targeting (DART) protein in patients with B7-H3-expressing neoplasms or B7-H3 expressing tumor vasculature. J Clin Oncol 34:TPS3105 (Abstract nr)

    Article  Google Scholar 

  30. Powderly JD, Hurwitz H, Ryan DP, Laheru DA, Pandya NB, Lohr J et al (2016) A phase 1, first-in-human, open label, dose escalation study of MGD007, a humanized gpA33 x CD3 DART molecule, in patients with relapsed/refractory metastatic colorectal carcinoma. J Clin Oncol 34:TPS3628 (Abstract nr)

    Google Scholar 

  31. Lutterbuese R, Raum T, Kischel R, Hoffmann P, Mangold S, Rattel B et al (2010) T cell-engaging BiTE antibodies specific for EGFR potently eliminate KRAS- and BRAF-mutated colorectal cancer cells. Proc Natl Acad Sci USA 107:12605–12610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Turley SJ, Cremasco V, Astarita JL (2015) Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 15:669–682

    Article  CAS  PubMed  Google Scholar 

  33. Rosfjord E, Lucas J, Li G, Gerber HP (2014) Advances in patient-derived tumor xenografts: from target identification to predicting clinical response rates in oncology. Biochem Pharmacol 91:135–143

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

DART® is a registered trademark of MacroGenics Inc. The authors would like to additionally acknowledge the contributions of the following Pfizer Inc. colleagues to the presented body of work: Alison Betts, Michael Cinque, Magali Guffroy, Tim Nichols, Leslie Obert, Alan Opsahl, and Nicole Streiner.

Author information

Authors and Affiliations

Authors

Contributions

Timothy S. Fisher: writing, editing, experimental design, execution and interpretation of results. Andrea T. Hooper: writing, editing, experimental design and interpretation of results. Justin Lucas: writing, experimental design and execution. Tracey H. Clark: writing, experimental design and execution. Allison K. Rohner: experimental design and execution. Bryan Peano: experimental design and execution. Mark W. Elliott: experimental design and execution. Konstantinos Tsaparikos: experimental design and execution. Hui Wang: editing, experimental design and interpretation of results. Jonathon Golas: experimental design and execution. Maria Gavriil: experimental design and execution. Nahor Haddish-Berhane: experimental design and interpretation of results. Lioudmila Tchistiakova: experimental design and interpretation of results. Hans-Peter Gerber: experimental design and interpretation of results. Adam R. Root: experimental design and interpretation of results. Chad May: writing, editing, experimental design, and interpretation of results.

Corresponding author

Correspondence to Timothy S. Fisher.

Ethics declarations

Funding

No relevant funding.

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval and ethical standards

All animal experimental procedures complied with the Guide for the Care and Use of Laboratory Animals (Institute for Laboratory Animal Research, 1996) and were approved by the Pfizer Global Research and Development Institutional Animal Care and Use Committee. All human blood samples from healthy donors were collected through the Pfizer Global Occupational Health and Wellness research support program under review of the Institutional Review Board provided with informed consent compliant with guidelines set forth by the International Conference on Harmonization on Good Clinical Practice, as well as local regulatory and legal requirements.

Additional information

Text from this paper was included in a published short abstract for an oral presentation at the 23rd International Molecular Medicine Tri-Conference March 8, 2016, San Francisco, USA.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2018 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fisher, T.S., Hooper, A.T., Lucas, J. et al. A CD3-bispecific molecule targeting P-cadherin demonstrates T cell-mediated regression of established solid tumors in mice. Cancer Immunol Immunother 67, 247–259 (2018). https://doi.org/10.1007/s00262-017-2081-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2081-0

Keywords

Navigation