Skip to main content

Advertisement

Log in

Cholecystokinin receptor antagonist alters pancreatic cancer microenvironment and increases efficacy of immune checkpoint antibody therapy in mice

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Advanced pancreatic ductal adenocarcinoma (PDAC) has typically been resistant to chemotherapy and immunotherapy; therefore, novel strategies are needed to enhance therapeutic response. Cholecystokinin (CCK) has been shown to stimulate growth of pancreatic cancer. CCK receptors (CCKRs) are present on pancreatic cancer cells, fibroblasts, and lymphocytes. We hypothesized that CCKR blockade would improve response to immune checkpoint antibodies by promoting influx of tumor-infiltrating lymphocytes (TILs) and reducing fibrosis. We examined the effects of CCKR antagonists or immune checkpoint blockade antibodies alone or in combination in murine models of PDAC. Monotherapy with CCKR blockade significantly decreased tumor size and metastases in SCID mice with orthotopic PDAC, and in C57BL/6 mice, it reduced fibrosis and induced the influx of TILs. Immune-competent mice bearing syngeneic pancreatic cancer (Panc02 and mT3-2D) that were treated with the combination of CCK receptor antagonists and immune checkpoint blockade antibodies survived significantly longer with smaller tumors. Tumor immunohistochemical staining and flow cytometry demonstrated that the tumors of mice treated with the combination regimen had a significant reduction in Foxp3+ T-regulatory cells and an increase in CD4+ and CD8+ lymphocytes. Masson’s trichrome stain analysis revealed 50% less fibrosis in the tumors of mice treated with CCKR antagonist compared to controls and compared to checkpoint antibody therapy. CCKR antagonists given with immune checkpoint antibody therapy represent a novel approach for improving survival of PDAC. The mechanism by which this combination therapy improves the survival of PDAC may be related to the decreased fibrosis and immune cells of the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CAFs:

cancer-associated fibroblasts

CCK:

cholecystokinin

CCKR:

cholecystokinin receptor

CTLA-4:

cytotoxic T–lymphocyte-associated antigen 4

DMEM:

Dulbecco’s Modified Eagle Medium

PanIN:

pancreatic intraepithelial neoplasia

PDAC:

pancreatic ductal adenocarcinoma

PD-1:

programmed cell death protein-1

SCID:

severe combined immune deficiency

α-SMA:

alpha smooth muscle actin

TILs:

tumor-infiltrating lymphocytes

Tregs:

T-regulatory lymphocytes

References

  1. Smith JP, Solomon TE, Bagheri S, Kramer S (1990) Cholecystokinin stimulates growth of human pancreatic adenocarcinoma SW-1990. Dig Dis Sci 35:1377–1384

    Article  CAS  PubMed  Google Scholar 

  2. Smith JP, Kramer ST, Solomon TE (1991) CCK stimulates growth of six human pancreatic cancer cell lines in serum-free medium. Regul Pept 32:341–349

    Article  CAS  PubMed  Google Scholar 

  3. Smith JP, Fantaskey AP, Liu G, Zagon IS (1995) Identification of gastrin as a growth peptide in human pancreatic cancer. Am J Physiol 268:R135–R141

    CAS  PubMed  Google Scholar 

  4. Howatson AG, Carter DC (1985) Pancreatic carcinogenesis-enhancement by cholecystokinin in the hamster-nitrosamine model. Br J Cancer 51:107–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carriere C, Young AL, Gunn JR, Longnecker DS, Korc M (2009) Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras. Biochem Biophys Res Commun 382:561–565. doi:10.1016/j.bbrc.2009.03.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bardram L, Hilsted L, Rehfeld JF (1990) Progastrin expression in mammalian pancreas. Proc Natl Acad Sci USA 87:298–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brand SJ, Fuller PJ (1988) Differential gastrin gene expression in rat gastrointestinal tract and pancreas during neonatal development. J Biol Chem 263:5341–5347

    CAS  PubMed  Google Scholar 

  8. Tamiolakis D, Venizelos I, Simopoulos C, Kotini A, Jivannakis T, Papadopoulos N (2004) Does neoplastic gastrin expression remodel the embryonal pattern of the protein? A study in human pancreas. Hepatogastroenterology 51:249–252

    CAS  PubMed  Google Scholar 

  9. Prasad NB, Biankin AV, Fukushima N, Maitra A, Dhara S, Elkahloun AG, Hruban RH, Goggins M, Leach SD (2005) Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of Hedgehog signaling on pancreatic ductal epithelial cells. Cancer Res 65:1619–1626. doi:10.1158/0008-5472.CAN-04-1413

    Article  CAS  PubMed  Google Scholar 

  10. Smith JP, Hamory MW, Verderame MF, Zagon IS (1998) Quantitative analysis of gastrin mRNA and peptide in normal and cancerous human pancreas. Int J Mol Med 2:309–315

    CAS  PubMed  Google Scholar 

  11. Smith JP, Shih A, Wu Y, McLaughlin PJ, Zagon IS (1996) Gastrin regulates growth of human pancreatic cancer in a tonic and autocrine fashion. Am J Physiol 270:R1078–R1084

    Article  CAS  PubMed  Google Scholar 

  12. Smith JP, Rickabaugh CA, McLaughlin PJ, Zagon IS (1993) Cholecystokinin receptors and PANC-1 human pancreatic cancer cells. Am J Physiol 265:G149–G155

    CAS  PubMed  Google Scholar 

  13. Smith JP, Liu G, Soundararajan V, McLaughlin PJ, Zagon IS (1994) Identification and characterization of CCK-B/gastrin receptors in human pancreatic cancer cell lines. Am J Physiol 266:R277–R283

    CAS  PubMed  Google Scholar 

  14. Matters GL, Harms JF, McGovern CO, Jayakumar C, Crepin K, Smith ZP, Nelson MC, Stock H, Fenn CW, Kaiser J, Kester M, Smith JP (2009) Growth of human pancreatic cancer is inhibited by down-regulation of gastrin gene expression. Pancreas 38:e151–e161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fino KK, Matters GL, McGovern CO, Gilius EL, Smith JP (2012) Downregulation of the CCK-B receptor in pancreatic cancer cells blocks proliferation and promotes apoptosis. Am J Physiol Gastrointest Liver Physiol 302:G1244–G1252. doi:10.1152/ajpgi.00460.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith JP, Solomon TE (2014) Cholecystokinin and pancreatic cancer: the chicken or the egg? Am J Physiol Gastrointest Liver Physiol 306:G91–G101. doi:10.1152/ajpgi.00301.2013

    Article  PubMed  Google Scholar 

  17. Wank SA, Harkins R, Jensen RT, Shapira H, de Weerth A, Slattery T (1992) Purification, molecular cloning, and functional expression of the cholecystokinin receptor from rat pancreas. Proc Natl Acad Sci USA 89:3125–3129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wank SA, Pisegna JR, de Weerth A (1994) Cholecystokinin receptor family. Molecular cloning, structure, and functional expression in rat, guinea pig, and human. Ann N Y Acad Sci 713:49–66

    Article  CAS  PubMed  Google Scholar 

  19. Weinberg DS, Ruggeri B, Barber MT, Biswas S, Miknyocki S, Waldman SA (1997) Cholecystokinin A and B receptors are differentially expressed in normal pancreas and pancreatic adenocarcinoma. J Clin Invest 100:597–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Longnecker DS, Curphey TJ, Lilja HS, French JI, Daniel DS (1980) Carcinogenicity in rats of the nitrosourea amino acid N delta-(N-methyl-N-nitrosocarbamoyl)-L-ornithine. J Environ Pathol Toxicol 4:117–129

    CAS  PubMed  Google Scholar 

  21. Smith JP, Cooper TK, McGovern CO, Gilius EL, Zhong Q, Liao J, Molinolo AA, Gutkind JS, Matters GL (2014) Cholecystokinin receptor antagonist halts progression of pancreatic cancer precursor lesions and fibrosis in mice. Pancreas 43:1050–1059. doi:10.1097/MPA.0000000000000194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith JP, Verderame MF, McLaughlin P, Martenis M, Ballard E, Zagon IS (2002) Characterization of the CCK-C (cancer) receptor in human pancreatic cancer. Int J Mol Med 10:689–694

    CAS  PubMed  Google Scholar 

  23. Smith JP, Harms JF, Matters GL, McGovern CO, Ruggiero FM, Liao J, Fino KK, Ortega EE, Gilius EL, Phillips JA III (2012) A single nucleotide polymorphism of the cholecystokinin-B receptor predicts risk for pancreatic cancer. Cancer Biol Ther 13:164–174. doi:10.4161/cbt.13.3.18698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rai R, Kim JJ, Tewari M, Shukla HS (2016) Heterogeneous expression of cholecystokinin and gastrin receptor in stomach and pancreatic cancer: an immunohistochemical study. J Cancer Res Ther 12:411–416. doi:10.4103/0973-1482.168970

    Article  CAS  PubMed  Google Scholar 

  25. Abbruzzese JL, Gholson CF, Daugherty K, Larson E, DuBrow R, Berlin R, Levin B (1992) A pilot clinical trial of the cholecystokinin receptor antagonist MK-329 in patients with advanced pancreatic cancer. Pancreas 7:165–171

    Article  CAS  PubMed  Google Scholar 

  26. Berna MJ, Jensen RT (2007) Role of CCK/gastrin receptors in gastrointestinal/metabolic diseases and results of human studies using gastrin/CCK receptor agonists/antagonists in these diseases. Curr Top Med Chem 7:1211–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang RS, Lotti VJ, Chen TB, Kunkel KA (1986) Characterization of the binding of [3H]-(±)-L-364,718: a new potent, nonpeptide cholecystokinin antagonist radioligand selective for peripheral receptors. Mol Pharmacol 30:212–217

    CAS  PubMed  Google Scholar 

  28. Matters GL, Cooper TK, McGovern CO, Gilius EL, Liao J, Barth BM, Kester M, Smith JP (2014) Cholecystokinin mediates progression and metastasis of pancreatic cancer associated with dietary fat. Dig Dis Sci 59:1180–1191. doi:10.1007/s10620-014-3201-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hahne WF, Jensen RT, Lemp GF, Gardner JD (1981) Proglumide and benzotript: members of a different class of cholecystokinin receptor antagonists. Proc Natl Acad Sci USA 78:6304–6308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Singh P, Owlia A, Espeijo R, Dai B (1995) Novel gastrin receptors mediate mitogenic effects of gastrin and processing intermediates of gastrin on Swiss 3T3 fibroblasts. Absence of detectable cholecystokinin (CCK)-A and CCK-B receptors. J Biol Chem 270:8429–8438

    Article  CAS  PubMed  Google Scholar 

  31. Berna MJ, Seiz O, Nast JF, Benten D, Blaker M, Koch J, Lohse AW, Pace A (2010) CCK1 and CCK2 receptors are expressed on pancreatic stellate cells and induce collagen production. J Biol Chem 285:38905–38914. doi:10.1074/jbc.M110.125534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Phillips PA, Yang L, Shulkes A, Vonlaufen A, Poljak A, Bustamante S, Warren A, Xu Z, Guilhaus M, Pirola R, Apte MV, Wilson JS (2010) Pancreatic stellate cells produce acetylcholine and may play a role in pancreatic exocrine secretion. Proc Natl Acad Sci USA 107:17397–17402. doi:10.1073/pnas.1000359107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Apte MV, Park S, Phillips PA, Santucci N, Goldstein D, Kumar RK, Ramm GA, Buchler M, Friess H, McCarroll JA, Keogh G, Merrett N, Pirola R, Wilson JS (2004) Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas 29:179–187

    Article  CAS  PubMed  Google Scholar 

  34. Apte MV, Wilson JS, Lugea A, Pandol SJ (2013) A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology 144:1210–1219. doi:10.1053/j.gastro.2012.11.037

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang JG, Liu JX, Jia XX, Geng J, Yu F, Cong B (2014) Cholecystokinin octapeptide regulates the differentiation and effector cytokine production of CD4 T cells in vitro. Int Immunopharmacol 20:307–315. doi:10.1016/j.intimp.2014.03.013

    Article  CAS  PubMed  Google Scholar 

  36. Zhang JG, Cong B, Li QX, Chen HY, Qin J, Fu LH (2011) Cholecystokinin octapeptide regulates lipopolysaccharide-activated B cells co-stimulatory molecule expression and cytokines production in vitro. Immunopharmacol Immunotoxicol 33:157–163. doi:10.3109/08923973.2010.491079

    Article  PubMed  Google Scholar 

  37. Corbett TH, Roberts BJ, Leopold WR, Peckham JC, Wilkoff LJ, Griswold DP Jr, Schabel FM Jr (1984) Induction and chemotherapeutic response of two transplantable ductal adenocarcinomas of the pancreas in C57BL/6 mice. Cancer Res 44:717–726

    CAS  PubMed  Google Scholar 

  38. Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, Jager M, Ponz-Sarvise M, Tiriac H, Spector MS, Gracanin A, Oni T, Yu KH, van BR, Huch M, Rivera KD, Wilson JP, Feigin ME, Ohlund D, Handly-Santana A, Ardito-Abraham CM, Ludwig M, Elyada E, Alagesan B, Biffi G, Yordanov GN, Delcuze B, Creighton B, Wright K, Park Y, Morsink FH, Molenaar IQ, Borel Rinkes IH, Cuppen E, Hao Y, Jin Y, Nijman IJ, Iacobuzio-Donahue C, Leach SD, Pappin DJ, Hammell M, Klimstra DS, Basturk O, Hruban RH, Offerhaus GJ, Vries RG, Clevers H, Tuveson DA (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160:324–338. doi:10.1016/j.cell.2014.12.021

    Article  CAS  PubMed  Google Scholar 

  39. Herranz R (2003) Cholecystokinin antagonists: pharmacological and therapeutic potential. Med Res Rev 23:559–605. doi:10.1002/med.10042

    Article  CAS  PubMed  Google Scholar 

  40. Kennedy DJ, Vetteth S, Periyasamy SM, Kanj M, Fedorova L, Khouri S, Kahaleh MB, Xie Z, Malhotra D, Kolodkin NI, Lakatta EG, Fedorova OV, Bagrov AY, Shapiro JI (2006) Central role for the cardiotonic steroid marinobufagenin in the pathogenesis of experimental uremic cardiomyopathy. Hypertension 47:488–495. doi:10.1161/01.HYP.0000202594.82271.92

    Article  CAS  PubMed  Google Scholar 

  41. Surana R, Wang S, Xu W, Jablonski SA, Weiner LM (2014) IL4 limits the efficacy of tumor-targeted antibody therapy in a murine model. Cancer Immunol Res 2:1103–1112. doi:10.1158/2326-6066.CIR-14-0103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hanyu N, Dodds WJ, Layman RD, Hogan WJ, Colton DG (1991) Effect of two new cholecystokinin antagonists on gallbladder emptying in opossums. Am J Physiol 260:G258–G264

    CAS  PubMed  Google Scholar 

  43. Miederer SE, Lindstaedt H, Kutz K, Mayershofer R (1979) Efficient treatment of gastric ulcer with proglumide (Milid) in outpatients (double blind trial). Acta Hepatogastroenterol 26:314–318

    CAS  Google Scholar 

  44. Benedetti F, Amanzio M, Vighetti S, Asteggiano G (2006) The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J Neurosci 26:12014–12022. doi:10.1523/JNEUROSCI.2947-06.2006

    Article  CAS  PubMed  Google Scholar 

  45. Abu Eid R, Razavi G, Mkrtichyan M, Janik J, Khleif SN (2016) Old-school chemotherapy in immunotherapeutic combination in cancer, a low-cost drug repurposed. Cancer Immunol Res 4:377–382

    Article  CAS  PubMed  Google Scholar 

  46. Mkrtichyan M, Najjar YG, Raulfs EC, Abdalla MY, Samara R, Rotem-Yehudar R, Cook L, Khleif SN (2011) Anti-PD-1 synergizes with cyclophosphamide to induce potent anti-tumor vaccine effects through novel mechanisms. Eur J Immunol 41:2977–2986. doi:10.1002/eji.201141639

    Article  CAS  PubMed  Google Scholar 

  47. Kaczanowska S, Joseph AM, Davila E (2013) TLR agonists: our best frenemy in cancer immunotherapy. J Leukoc Biol 93:847–863. doi:10.1189/jlb.1012501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Amedei A, Niccolai E, Prisco D (2014) Pancreatic cancer: role of the immune system in cancer progression and vaccine-based immunotherapy. Hum Vaccin Immunother. doi:10.4161/hv.34392

    PubMed  PubMed Central  Google Scholar 

  49. Fang H, Declerck YA (2013) Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res 73:4965–4977. doi:10.1158/0008-5472.CAN-13-0661

    Article  CAS  PubMed  Google Scholar 

  50. Sideras K, Braat H, Kwekkeboom J, van Eijck CH, Peppelenbosch MP, Sleijfer S, Bruno M (2014) Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies. Cancer Treat Rev 40:513–522. doi:10.1016/j.ctrv.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  51. Strauss J, Alewine C, Figg WD, Duffy A (2016) Targeting the microenvironment of pancreatic cancer: overcoming treatment barriers and improving local immune responses. Clin Transl Oncol 18:653–659. doi:10.1007/s12094-015-1459-8

    Article  CAS  PubMed  Google Scholar 

  52. Nywening TM, Wang-Gillam A, Sanford DE, Belt BA, Panni RZ, Cusworth BM, Toriola AT, Nieman RK, Worley LA, Yano M, Fowler KJ, Lockhart AC, Suresh R, Tan BR, Lim KH, Fields RC, Strasberg SM, Hawkins WG, Denardo DG, Goedegebuure SP, Linehan DC (2016) Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol 17:651–662. doi:10.1016/S1470-2045(16)00078-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hingorani SR, Harris WP, Beck JT, Berdov BA, Wagner SA, Pshevlotsky EM, Tjulandin SA, Gladkov OA, Holcombe RF, Korn R, Raghunand N, Dychter S, Jiang P, Shepard HM, Devoe CE (2016) Phase Ib study of PEGylated recombinant human hyaluronidase and gemcitabine in patients with advanced pancreatic cancer. Clin Cancer Res 22:2848–2854. doi:10.1158/1078-0432.CCR-15-2010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Grant support: Supported by the National Institutes of Health, National Cancer Institute grants CA50633, and CA194745. These studies were conducted in part at the Lombardi Comprehensive Cancer Center Histopathology & Tissue Shared resource and in the Preclinical Imaging Research Laboratory which is supported in part by NIH/NCI grant P30-CA051008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill P. Smith.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement on the welfare of animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Human subjects

This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 589 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, J.P., Wang, S., Nadella, S. et al. Cholecystokinin receptor antagonist alters pancreatic cancer microenvironment and increases efficacy of immune checkpoint antibody therapy in mice. Cancer Immunol Immunother 67, 195–207 (2018). https://doi.org/10.1007/s00262-017-2077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2077-9

Keywords

Navigation