Cancer Immunology, Immunotherapy

, Volume 63, Issue 1, pp 37–43 | Cite as

Non-genomic events determining the sensitivity of hemopoietic malignancies to glucocorticoid-induced apoptosis

  • Shlomit Kfir-ErenfeldEmail author
  • Eitan Yefenof
Focussed Research Review


Glucocorticoid (GC) hormones have been introduced as therapeutic agents in blood cancers six decades ago. The effectiveness of GC treatment stems from its ability to induce apoptotic death of hemopoietic cells. A major impediment in GC therapy is the acquisition of resistance to the drug upon repeated treatment. In addition, some blood cancers are a priori resistant to GC therapy. Usually, resistance to GC correlates with poor prognosis. Albeit the wide use of GC in clinical practice, their mode of action is not fully understood. The cellular response to GC is initiated by its binding to the cytosolic GC receptor (GR) that translocates to the nucleus and modulates gene expression. However, nuclear activities of GR occur in both apoptosis-sensitive and apoptosis-resistant cells. These apparent controversies can be resolved by deciphering non-genomic effects of GCs and the mode by which they modulate the apoptotic response. We suggest that non-genomic consequences of GC stimulation determine the cell fate toward survival or death. Understanding the cellular mechanisms of GC apoptotic sensitivity contributes to the development of new modalities for overcoming GC resistance.


Glucocorticoids Hemopoietic tumors Mitochondria BIM Glycogen synthase kinase 3 CITIM 2013 



The authors wish to thank Dr. Ronit Vogt-Sionov, Hali Spokoini, and Prof. Ingrid Herr for their contribution. The study described in this review was supported in part by the German-Israel Foundation (GIF) and Concern Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zhang G, Zhang L, Duff GW (1997) A negative regulatory region containing a glucocorticosteroid response element (nGRE) in the human interleukin-1beta gene. DNA Cell Biol 16(2):145–152PubMedCrossRefGoogle Scholar
  2. 2.
    Dostert A, Heinzel T (2004) Negative glucocorticoid receptor response elements and their role in glucocorticoid action. Curr Pharm Des 10(23):2807–2816PubMedCrossRefGoogle Scholar
  3. 3.
    Kfir-Erenfeld S, Sionov RV, Spokoini R, Cohen O, Yefenof E (2010) Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations. Leuk Lymphoma 51(11):1968–2005. doi: 10.3109/10428194.2010.506570 PubMedCrossRefGoogle Scholar
  4. 4.
    Sionov RV, Spokoini R, Kfir-Erenfeld S, Cohen O, Yefenof E (2008) Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv Cancer Res 101:127–248. doi: 10.1016/S0065-230X(08)00406-5 PubMedGoogle Scholar
  5. 5.
    Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18(3):306–360PubMedCrossRefGoogle Scholar
  6. 6.
    Sionov RV, Cohen O, Kfir S, Zilberman Y, Yefenof E (2006) Role of mitochondrial glucocorticoid receptor in glucocorticoid-induced apoptosis. J Exp Med 203(1):189–201. doi: 10.1084/jem.20050433 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Talaber G, Boldizsar F, Bartis D, Palinkas L, Szabo M, Berta G, Setalo G Jr, Nemeth P, Berki T (2009) Mitochondrial translocation of the glucocorticoid receptor in double-positive thymocytes correlates with their sensitivity to glucocorticoid-induced apoptosis. Int Immunol 21(11):1269–1276. doi: 10.1093/intimm/dxp093 PubMedCrossRefGoogle Scholar
  8. 8.
    Kfir S, Sionov RV, Zafrir E, Zilberman Y, Yefenof E (2007) Staurosporine sensitizes T lymphoma cells to glucocorticoid-induced apoptosis: role of Nur77 and Bcl-2. Cell Cycle 6(24):3086–3096PubMedCrossRefGoogle Scholar
  9. 9.
    Spokoini R, Kfir-Erenfeld S, Yefenof E, Sionov RV (2010) Glycogen synthase kinase-3 plays a central role in mediating glucocorticoid-induced apoptosis. Mol Endocrinol 24(6):1136–1150. doi: 10.1210/me.2009-0466 PubMedCrossRefGoogle Scholar
  10. 10.
    Wang Z, Malone MH, He H, McColl KS, Distelhorst CW (2003) Microarray analysis uncovers the induction of the proapoptotic BH3-only protein Bim in multiple models of glucocorticoid-induced apoptosis. J Biol Chem 278(26):23861–23867. doi: 10.1074/jbc.M301843200 PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang L, Insel PA (2004) The pro-apoptotic protein Bim is a convergence point for cAMP/protein kinase A- and glucocorticoid-promoted apoptosis of lymphoid cells. J Biol Chem 279(20):20858–20865. doi: 10.1074/jbc.M310643200 PubMedCrossRefGoogle Scholar
  12. 12.
    Bouillet P, Zhang LC, Huang DC, Webb GC, Bottema CD, Shore P, Eyre HJ, Sutherland GR, Adams JM (2001) Gene structure alternative splicing, and chromosomal localization of pro-apoptotic Bcl-2 relative Bim. Mamm Genome 12(2):163–168PubMedCrossRefGoogle Scholar
  13. 13.
    Gilley J, Coffer PJ, Ham J (2003) FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol 162(4):613–622. doi: 10.1083/jcb.200303026 PubMedCrossRefGoogle Scholar
  14. 14.
    Stahl M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM, Medema RH (2002) The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol 168(10):5024–5031PubMedGoogle Scholar
  15. 15.
    Ma J, Xie Y, Shi Y, Qin W, Zhao B, Jin Y (2008) Glucocorticoid-induced apoptosis requires FOXO3A activity. Biochem Biophys Res Commun 377(3):894–898. doi: 10.1016/j.bbrc.2008.10.097 PubMedCrossRefGoogle Scholar
  16. 16.
    Urbich C, Knau A, Fichtlscherer S, Walter DH, Bruhl T, Potente M, Hofmann WK, de Vos S, Zeiher AM, Dimmeler S (2005) FOXO-dependent expression of the proapoptotic protein Bim: pivotal role for apoptosis signaling in endothelial progenitor cells. FASEB J 19(8):974–976. doi: 10.1096/fj.04-2727fje PubMedGoogle Scholar
  17. 17.
    Abrams MT, Robertson NM, Yoon K, Wickstrom E (2004) Inhibition of glucocorticoid-induced apoptosis by targeting the major splice variants of BIM mRNA with small interfering RNA and short hairpin RNA. J Biol Chem 279(53):55809–55817. doi: 10.1074/jbc.M411767200 PubMedCrossRefGoogle Scholar
  18. 18.
    Lu J, Quearry B, Harada H (2006) p38-MAP kinase activation followed by BIM induction is essential for glucocorticoid-induced apoptosis in lymphoblastic leukemia cells. FEBS Lett 580(14):3539–3544. doi: 10.1016/j.febslet.2006.05.031 PubMedCrossRefGoogle Scholar
  19. 19.
    O’Reilly LA, Cullen L, Visvader J, Lindeman GJ, Print C, Bath ML, Huang DC, Strasser A (2000) The proapoptotic BH3-only protein bim is expressed in hematopoietic, epithelial, neuronal, and germ cells. Am J Pathol 157(2):449–461. doi: 10.1016/S0002-9440(10)64557-9 PubMedCrossRefGoogle Scholar
  20. 20.
    Puthalakath H, Strasser A (2002) Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 9(5):505–512. doi: 10.1038/sj/cdd/4400998 PubMedCrossRefGoogle Scholar
  21. 21.
    Lomonosova E, Chinnadurai G (2008) BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27(Suppl 1):S2–S19. doi: 10.1038/onc.2009.39 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Rathmell JC, Lindsten T, Zong WX, Cinalli RM, Thompson CB (2002) Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nat Immunol 3(10):932–939. doi: 10.1038/ni834 PubMedCrossRefGoogle Scholar
  23. 23.
    Rambal AA, Panaguiton ZL, Kramer L, Grant S, Harada H (2009) MEK inhibitors potentiate dexamethasone lethality in acute lymphoblastic leukemia cells through the pro-apoptotic molecule BIM. Leukemia 23(10):1744–1754. doi: 10.1038/leu.2009.80 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Laane E, Panaretakis T, Pokrovskaja K, Buentke E, Corcoran M, Soderhall S, Heyman M, Mazur J, Zhivotovsky B, Porwit A, Grander D (2007) Dexamethasone-induced apoptosis in acute lymphoblastic leukemia involves differential regulation of Bcl-2 family members. Haematologica 92(11):1460–1469. doi: 10.3324/haematol.10543 PubMedCrossRefGoogle Scholar
  25. 25.
    Linseman DA, Butts BD, Precht TA, Phelps RA, Le SS, Laessig TA, Bouchard RJ, Florez-McClure ML, Heidenreich KA (2004) Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 24(44):9993–10002. doi: 10.1523/JNEUROSCI.2057-04.2004 PubMedCrossRefGoogle Scholar
  26. 26.
    Pastorino JG, Hoek JB, Shulga N (2005) Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res 65(22):10545–10554. doi: 10.1158/0008-5472.CAN-05-1925 PubMedCrossRefGoogle Scholar
  27. 27.
    Sade H, Khandre NS, Mathew MK, Sarin A (2004) The mitochondrial phase of the glucocorticoid-induced apoptotic response in thymocytes comprises sequential activation of adenine nucleotide transporter (ANT)-independent and ANT-dependent events. Eur J Immunol 34(1):119–125. doi: 10.1002/eji.200324650 PubMedCrossRefGoogle Scholar
  28. 28.
    Pastorino JG, Shulga N, Hoek JB (2002) Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277(9):7610–7618. doi: 10.1074/jbc.M109950200 PubMedCrossRefGoogle Scholar
  29. 29.
    Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559):785–789. doi: 10.1038/378785a0 PubMedCrossRefGoogle Scholar
  30. 30.
    Beurel E, Jope RS (2006) The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 79(4):173–189. doi: 10.1016/j.pneurobio.2006.07.006 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Nuutinen U, Postila V, Matto M, Eeva J, Ropponen A, Eray M, Riikonen P, Pelkonen J (2006) Inhibition of PI3-kinase-Akt pathway enhances dexamethasone-induced apoptosis in a human follicular lymphoma cell line. Exp Cell Res 312(3):322–330. doi: 10.1016/j.yexcr.2005.10.023 PubMedGoogle Scholar
  32. 32.
    Ogawa M, Nishiura T, Oritani K, Yoshida H, Yoshimura M, Okajima Y, Ishikawa J, Hashimoto K, Matsumura I, Tomiyama Y, Matsuzawa Y (2000) Cytokines prevent dexamethasone-induced apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways in a new multiple myeloma cell line. Cancer Res 60(15):4262–4269PubMedGoogle Scholar
  33. 33.
    Sade H, Sarin A (2003) IL-7 inhibits dexamethasone-induced apoptosis via Akt/PKB in mature, peripheral T cells. Eur J Immunol 33(4):913–919. doi: 10.1002/eji.200323782 PubMedCrossRefGoogle Scholar
  34. 34.
    Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868PubMedCrossRefGoogle Scholar
  35. 35.
    Pekarsky Y, Hallas C, Palamarchuk A, Koval A, Bullrich F, Hirata Y, Bichi R, Letofsky J, Croce CM (2001) Akt phosphorylates and regulates the orphan nuclear receptor Nur77. Proc Natl Acad Sci USA 98(7):3690–3694. doi: 10.1073/pnas.051003198 PubMedCrossRefGoogle Scholar
  36. 36.
    Mittelstadt PR, DeFranco AL (1993) Induction of early response genes by cross-linking membrane Ig on B lymphocytes. J Immunol 150(11):4822–4832PubMedGoogle Scholar
  37. 37.
    Liu ZG, Smith SW, McLaughlin KA, Schwartz LM, Osborne BA (1994) Apoptotic signals delivered through the T-cell receptor of a T-cell hybrid require the immediate-early gene nur77. Nature 367(6460):281–284. doi: 10.1038/367281a0 PubMedCrossRefGoogle Scholar
  38. 38.
    Woronicz JD, Calnan B, Ngo V, Winoto A (1994) Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature 367(6460):277–281. doi: 10.1038/367277a0 PubMedCrossRefGoogle Scholar
  39. 39.
    Winoto A, Littman DR (2002) Nuclear hormone receptors in T lymphocytes. Cell 109(Suppl):S57–S66PubMedCrossRefGoogle Scholar
  40. 40.
    Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC, Zhang XK (2004) Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 116(4):527–540PubMedCrossRefGoogle Scholar
  41. 41.
    Li QX, Ke N, Sundaram R, Wong-Staal F (2006) NR4A1, 2, 3 an orphan nuclear hormone receptor family involved in cell apoptosis and carcinogenesis. Histol Histopathol 21(5):533–540PubMedGoogle Scholar
  42. 42.
    Rajpal A, Cho YA, Yelent B, Koza-Taylor PH, Li D, Chen E, Whang M, Kang C, Turi TG, Winoto A (2003) Transcriptional activation of known and novel apoptotic pathways by Nur77 orphan steroid receptor. EMBO J 22(24):6526–6536. doi: 10.1093/emboj/cdg620 PubMedCrossRefGoogle Scholar
  43. 43.
    Masuyama N, Oishi K, Mori Y, Ueno T, Takahama Y, Gotoh Y (2001) Akt inhibits the orphan nuclear receptor Nur77 and T-cell apoptosis. J Biol Chem 276(35):32799–32805. doi: 10.1074/jbc.M105431200 PubMedCrossRefGoogle Scholar
  44. 44.
    Chen HZ, Zhao BX, Zhao WX, Li L, Zhang B, Wu Q (2008) Akt phosphorylates the TR3 orphan receptor and blocks its targeting to the mitochondria. Carcinogenesis 29(11):2078–2088. doi: 10.1093/carcin/bgn197 PubMedCrossRefGoogle Scholar
  45. 45.
    Sionov RV, Kfir S, Zafrir E, Cohen O, Zilberman Y, Yefenof E (2006) Glucocorticoid-induced apoptosis revisited: a novel role for glucocorticoid receptor translocation to the mitochondria. Cell Cycle 5(10):1017–1026PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.The Lautenberg Center for Immunology and Cancer Research, IMRICThe Hebrew University-Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations