Advertisement

Abdominal Radiology

, Volume 44, Issue 12, pp 4011–4021 | Cite as

Noninvasive liver fibrosis assessment in chronic viral hepatitis C: agreement among 1D transient elastography, 2D shear wave elastography, and magnetic resonance elastography

  • João MatosEmail author
  • Francesco Paparo
  • Lorenzo Bacigalupo
  • Giovanni Cenderello
  • Ilaria Mussetto
  • Matteo De Cesari
  • Silvia Perugin Bernardi
  • Luca Cevasco
  • Gian Luca Forni
  • Giovanni Cassola
  • Gian Andrea Rollandi
Hepatobiliary
  • 52 Downloads

Abstract

Purpose

To assess the agreement of one-dimensional transient elastography (1D-TE), two-dimensional shear wave elastography (2D-SWE), and magnetic resonance elastography (MRE) in a consecutive cohort of patients affected by hepatitis C virus (HCV) and to understand which patient-related factors are associated with disagreement.

Methods

Ninety-one consecutive patients with current or previous chronic HCV infection were enrolled between March 2017 and September 2018. We assessed the correlation between stiffness measurements expressed in kilopascals (kPa). After converting kPa values in three groups of increasing fibrosis burden using validated cut-off values, we assessed the agreement among the different techniques. Factors influencing inter-modality disagreement were examined by employing multivariate logistic regression analysis.

Results

Seventy-seven patients met the inclusion criteria and had reliable measurements by all stiffness imaging techniques. At the quantitative analysis, a strong correlation between stiffness measurements was found (Spearman’s rho values ranging from 0.7 to 0.89 in all pairs of techniques). Complete concordance among MRE, 1D-TE, and 2D-SWE was found in 64.9% of patients, and the agreement was highest between MRE and 1D-TE, with κ value of 0.801. In only 2/77 patients (2.6%), there was complete disagreement. High body mass index (BMI) was the only factor significantly associated with inter-modality discordance.

Conclusions

MRE, 1D-TE, and 2D-SWE assigned the majority of patients to the same fibrosis group. The agreement was at least good, and there was a strong correlation between kPa values in all three pairs of techniques. Highest agreement was found between MRE and 1D-TE. High BMI was associated with discordance among the techniques.

Keywords

Elastography Magnetic resonance Hepatitis Liver fibrosis 

Notes

Acknowledgements

This study received a grant from GE Healthcare. We would like to thank Federica Landi, Alessio Veneziano, Ph.D., and Matteo Puntoni, Ph.D. for their contributions to this work.

References

  1. 1.
    GBD 2015 Disease and Injury Incidence and Prevalence Collaborators T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, Carter A, Casey DC, Charlson FJ, Chen AZ, Coggeshall M, Cornaby L, Dandona L, Dicker DJ, Dilegge T, Erskine HE, Ferrari AJ, Fitzmaurice C, Fleming T, Forouzanfar MH, Fullman N, Gething PW, Goldberg EM, Graetz N, Haagsma JA, Hay SI, Johnson CO, Kassebaum NJ, Kawashima T, Kemmer L, Khalil IA, Kinfu Y, Kyu HH, Leung J, Liang X, Lim SS, Lopez AD, Lozano R, Marczak L, Mensah GA, Mokdad AH, Naghavi M, Nguyen G, Nsoesie E, Olsen H, Pigott DM, Pinho C, Rankin Z, Reinig N, Salomon JA, Sandar L, Smith A, Stanaway J, Steiner C, Teeple S, Thomas BA, Troeger C, Wagner JA, Wang H, Wanga V, Whiteford HA, Zoeckler L, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abraham B, Abubakar I, Abu-Raddad LJ, Abu-Rmeileh NME, Ackerman IN, Adebiyi AO, Ademi Z, Adou AK, Afanvi KA, Agardh EE, Agarwal A, Kiadaliri AA, Ahmadieh H, Ajala ON, Akinyemi RO, Akseer N, Al-Aly Z, Alam K, Alam NKM, Aldhahri SF, Alegretti MA, Alemu ZA, Alexander LT, Alhabib S, Ali R, Alkerwi A, Alla F, Allebeck P, Al-Raddadi R, Alsharif U, Altirkawi KA, Alvis-Guzman N, Amare AT, Amberbir A, Amini H, Ammar W, Amrock SM, Andersen HH, Anderson GM, Anderson BO, Antonio CAT, Aregay AF, Ärnlöv J, Artaman A, Asayesh H, Assadi R, Atique S, Avokpaho EFGA, Awasthi A, Quintanilla BPA, Azzopardi P, Bacha U, Badawi A, Balakrishnan K, Banerjee A, Barac A, Barker-Collo SL, Bärnighausen T, Barregard L, Barrero LH, Basu A, Bazargan-Hejazi S, Beghi E, Bell B, Bell ML, Bennett DA, Bensenor IM, Benzian H, Berhane A, Bernabé E, Betsu BD, Beyene AS, Bhala N, Bhatt S, Biadgilign S, Bienhoff K, Bikbov B, Biryukov S, Bisanzio D, Bjertness E, Blore J, Borschmann R, Boufous S, Brainin M, Brazinova A, Breitborde NJK, Brown J, Buchbinder R, Buckle GC, Butt ZA, Calabria B, Campos-Nonato IR, Campuzano JC, Carabin H, Cárdenas R, Carpenter DO, Carrero JJ, Castañeda-Orjuela CA, Rivas JC, Catalá-López F, Chang J-C, Chiang PP-C, Chibueze CE, Chisumpa VH, Choi J-YJ, Chowdhury R, Christensen H, Christopher DJ, Ciobanu LG, Cirillo M, Coates MM, Colquhoun SM, Cooper C, Cortinovis M, Crump JA, Damtew SA, Dandona R, Daoud F, Dargan PI, Neves J das, Davey G, Davis AC, Leo D De, Degenhardt L, Gobbo LC Del, Dellavalle RP, Deribe K, Deribew A, Derrett S, Jarlais DC Des, Dharmaratne SD, Dhillon PK, Diaz-Torné C, Ding EL, Driscoll TR, Duan L, Dubey M, Duncan BB, Ebrahimi H, Ellenbogen RG, Elyazar I, Endres M, Endries AY, Ermakov SP, Eshrati B, Estep K, Farid TA, Farinha CS e S, Faro A, Farvid MS, Farzadfar F, Feigin VL, Felson DT, Fereshtehnejad S-M, Fernandes JG, Fernandes JC, Fischer F, Fitchett JRA, Foreman K, Fowkes FGR, Fox J, Franklin RC, Friedman J, Frostad J, Fürst T, Futran ND, Gabbe B, Ganguly P, Gankpé FG, Gebre T, Gebrehiwot TT, Gebremedhin AT, Geleijnse JM, Gessner BD, Gibney KB, Ginawi IAM, Giref AZ, Giroud M, Gishu MD, Giussani G, Glaser E, Godwin WW, Gomez-Dantes H, Gona P, Goodridge A, Gopalani SV, Gotay CC, Goto A, Gouda HN, Grainger R, Greaves F, Guillemin F, Guo Y, Gupta R, Gupta R, Gupta V, Gutiérrez RA, Haile D, Hailu AD, Hailu GB, Halasa YA, Hamadeh RR, Hamidi S, Hammami M, Hancock J, Handal AJ, Hankey GJ, Hao Y, Harb HL, Harikrishnan S, Haro JM, Havmoeller R, Hay RJ, Heredia-Pi IB, Heydarpour P, Hoek HW, Horino M, Horita N, Hosgood HD, Hoy DG, Htet AS, Huang H, Huang JJ, Huynh C, Iannarone M, Iburg KM, Innos K, Inoue M, Iyer VJ, Jacobsen KH, Jahanmehr N, Jakovljevic MB, Javanbakht M, Jayaraman SP, Jayatilleke AU, Jee SH, Jeemon P, Jensen PN, Jiang Y, Jibat T, Jimenez-Corona A, Jin Y, Jonas JB, Kabir Z, Kalkonde Y, Kamal R, Kan H, Karch A, Karema CK, Karimkhani C, Kasaeian A, Kaul A, Kawakami N, Keiyoro PN, Kemp AH, Keren A, Kesavachandran CN, Khader YS, Khan AR, Khan EA, Khang Y-H, Khera S, Khoja TAM, Khubchandani J, Kieling C, Kim P, Kim C, Kim D, Kim YJ, Kissoon N, Knibbs LD, Knudsen AK, Kokubo Y, Kolte D, Kopec JA, Kosen S, Kotsakis GA, Koul PA, Koyanagi A, Kravchenko M, Defo BK, Bicer BK, Kudom AA, Kuipers EJ, Kumar GA, Kutz M, Kwan GF, Lal A, Lalloo R, Lallukka T, Lam H, Lam JO, Langan SM, Larsson A, Lavados PM, Leasher JL, Leigh J, Leung R, Levi M, Li Y, Li Y, Liang J, Liu S, Liu Y, Lloyd BK, Lo WD, Logroscino G, Looker KJ, Lotufo PA, Lunevicius R, Lyons RA, Mackay MT, Magdy M, Razek A El, Mahdavi M, Majdan M, Majeed A, Malekzadeh R, Marcenes W, Margolis DJ, Martinez-Raga J, Masiye F, Massano J, McGarvey ST, McGrath JJ, McKee M, McMahon BJ, Meaney PA, Mehari A, Mejia-Rodriguez F, Mekonnen AB, Melaku YA, Memiah P, Memish ZA, Mendoza W, Meretoja A, Meretoja TJ, Mhimbira FA, Millear A, Miller TR, Mills EJ, Mirarefin M, Mitchell PB, Mock CN, Mohammadi A, Mohammed S, Monasta L, Hernandez JCM, Montico M, Mooney MD, Moradi-Lakeh M, Morawska L, Mueller UO, Mullany E, Mumford JE, Murdoch ME, Nachega JB, Nagel G, Naheed A, Naldi L, Nangia V, Newton JN, Ng M, Ngalesoni FN, Nguyen Q Le, Nisar MI, Pete PMN, Nolla JM, Norheim OF, Norman RE, Norrving B, Nunes BP, Ogbo FA, Oh I-H, Ohkubo T, Olivares PR, Olusanya BO, Olusanya JO, Ortiz A, Osman M, Ota E, PA M, Park E-K, Parsaeian M, Passos VM de A, Caicedo AJP, Patten SB, Patton GC, Pereira DM, Perez-Padilla R, Perico N, Pesudovs K, Petzold M, Phillips MR, Piel FB, Pillay JD, Pishgar F, Plass D, Platts-Mills JA, Polinder S, Pond CD, Popova S, Poulton RG, Pourmalek F, Prabhakaran D, Prasad NM, Qorbani M, Rabiee RHS, Radfar A, Rafay A, Rahimi K, Rahimi-Movaghar V, Rahman M, Rahman MHU, Rahman SU, Rai RK, Rajsic S, Ram U, Rao P, Refaat AH, Reitsma MB, Remuzzi G, Resnikoff S, Reynolds A, Ribeiro AL, Blancas MJR, Roba HS, Rojas-Rueda D, Ronfani L, Roshandel G, Roth GA, Rothenbacher D, Roy A, Sagar R, Sahathevan R, Sanabria JR, Sanchez-Niño MD, Santos IS, Santos JV, Sarmiento-Suarez R, Sartorius B, Satpathy M, Savic M, Sawhney M, Schaub MP, Schmidt MI, Schneider IJC, Schöttker B, Schwebel DC, Scott JG, Seedat S, Sepanlou SG, Servan-Mori EE, Shackelford KA, Shaheen A, Shaikh MA, Sharma R, Sharma U, Shen J, Shepard DS, Sheth KN, Shibuya K, Shin M-J, Shiri R, Shiue I, Shrime MG, Sigfusdottir ID, Silva DAS, Silveira DGA, Singh A, Singh JA, Singh OP, Singh PK, Sivonda A, Skirbekk V, Skogen JC, Sligar A, Sliwa K, Soljak M, Søreide K, Sorensen RJD, Soriano JB, Sposato LA, Sreeramareddy CT, Stathopoulou V, Steel N, Stein DJ, Steiner TJ, Steinke S, Stovner L, Stroumpoulis K, Sunguya BF, Sur P, Swaminathan S, Sykes BL, Szoeke CEI, Tabarés-Seisdedos R, Takala JS, Tandon N, Tanne D, Tavakkoli M, Taye B, Taylor HR, Ao BJ Te, Tedla BA, Terkawi AS, Thomson AJ, Thorne-Lyman AL, Thrift AG, Thurston GD, Tobe-Gai R, Tonelli M, Topor-Madry R, Topouzis F, Tran BX, Truelsen T, Dimbuene ZT, Tsilimbaris M, Tura AK, Tuzcu EM, Tyrovolas S, Ukwaja KN, Undurraga EA, Uneke CJ, Uthman OA, Gool CH van, Varakin YY, Vasankari T, Venketasubramanian N, Verma RK, Violante FS, Vladimirov SK, Vlassov VV, Vollset SE, Wagner GR, Waller SG, Wang L, Watkins DA, Weichenthal S, Weiderpass E, Weintraub RG, Werdecker A, Westerman R, White RA, Williams HC, Wiysonge CS, Wolfe CDA, Won S, Woodbrook R, Wubshet M, Xavier D, Xu G, Yadav AK, Yan LL, Yano Y, Yaseri M, Ye P, Yebyo HG, Yip P, Yonemoto N, Yoon S-J, Younis MZ, Yu C, Zaidi Z, Zaki MES, Zeeb H, Zhou M, Zodpey S, Zuhlke LJ, Murray CJL (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet (London, England) 388:1545–1602.  https://doi.org/10.1016/s0140-6736(16)31678-6 CrossRefGoogle Scholar
  2. 2.
    Tapper EB, Lok AS-F (2017) Use of Liver Imaging and Biopsy in Clinical Practice. N Engl J Med.  https://doi.org/10.1056/nejmra1610570 CrossRefPubMedGoogle Scholar
  3. 3.
    Paparo F, Cenderello G, Revelli M, Bacigalupo L, Rutigliani M, Zefiro D, Cevasco L, Amico M, Bandelloni R, Cassola G, Forni GL, Rollandi GA (2015) Diagnostic value of MRI proton density fat fraction for assessing liver steatosis in chronic viral c hepatitis. Biomed Res Int.  https://doi.org/10.1155/2015/758164 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    (1994) Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. The French METAVIR Cooperative Study Group. Hepatology 20:15–20Google Scholar
  5. 5.
    Poynard T, Lenaour G, Vaillant JC, Capron F, Munteanu M, Eyraud D, Ngo Y, M’Kada H, Ratziu V, Hannoun L, Charlotte F (2012) Liver biopsy analysis has a low level of performance for diagnosis of intermediate stages of fibrosis. Clin Gastroenterol Hepatol 10:657–63.e7.  https://doi.org/10.1016/j.cgh.2012.01.023 CrossRefPubMedGoogle Scholar
  6. 6.
    Castera L, Chan HL, Arrese M, Afdhal N, Bedossa P, Friedrich-Rust M, Han KH PM (2015) EASL-ALEH Clinical Practice Guidelines: Non-invasive tests for evaluation of liver disease severity and prognosis. J Hepatol 63:237–264.  https://doi.org/10.1016/j.jhep.2015.04.006 CrossRefGoogle Scholar
  7. 7.
    Dietrich CF, Bamber J, Berzigotti A, Bota S, Cantisani V, Castera L, Cosgrove D, Ferraioli G, Friedrich-Rust M, Gilja OH, Goertz RS, Karlas T, de Knegt R, de Ledinghen V, Piscaglia F, Procopet B, Saftoiu A, Sidhu PS, Sporea I, Thiele M (2017) EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). Ultraschall Med 38:e16–e47.  https://doi.org/10.1055/s-0043-103952 CrossRefPubMedGoogle Scholar
  8. 8.
    Srinivasa Babu A, Wells ML, Teytelboym OM, Mackey JE, Miller FH, Yeh BM, Ehman RL, Venkatesh SK (2016) Elastography in Chronic Liver Disease: Modalities, Techniques, Limitations, and Future Directions. RadioGraphics 36:1987–2006.  https://doi.org/10.1148/rg.2016160042 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Paparo F, Corradi F, Cevasco L, Revelli M, Marziano A, Molini L, Cenderello G, Cassola G, Rollandi GA (2014) Real-time elastography in the assessment of liver fibrosis: a review of qualitative and semi-quantitative methods for elastogram analysis. Ultrasound Med Biol 40:1923–1933.  https://doi.org/10.1016/j.ultrasmedbio.2014.03.021 CrossRefPubMedGoogle Scholar
  10. 10.
    Venkatesh SK, Yin M, Ehman RL (2013) Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging 37:544–555.  https://doi.org/10.1002/jmri.23731 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Singh S, Venkatesh SK, Wang Z, Miller FH, Motosugi U, Low RN, Hassanein T, Asbach P, Godfrey EM, Yin M, Chen J, Keaveny AP, Bridges M, Bohte A, Murad MH, Lomas DJ, Talwalkar JA, Ehman RL (2015) Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: A systematic review and meta-analysis of individual participant data. Clin Gastroenterol Hepatol.  https://doi.org/10.1016/j.cgh.2014.09.046 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yoon JH, Lee JM, Joo I, Lee ES, Sohn JY, Jang SK, Lee KB, Han JK, Choi BI (2014) Hepatic Fibrosis: Prospective Comparison of MR Elastography and US Shear-Wave Elastography for Evaluation. Radiology.  https://doi.org/10.1148/radiol.14132000 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Leung VY, Shen J, Wong VW, Abrigo J, Wong GL, Chim AM, Chu SH, Chan AW, Choi PC, Ahuja AT, Chan HL, Chu WC (2013) Quantitative Elastography of Liver Fibrosis and Spleen Stiffness in Chronic Hepatitis B Carriers: Comparison of Shear-Wave Elastography and Transient Elastography with Liver Biopsy Correlation. Radiology.  https://doi.org/10.1148/radiol.13130128 CrossRefPubMedGoogle Scholar
  14. 14.
    Dyvorne HA, Jajamovich GH, Bane O, Fiel MI, Chou H, Schiano TD, Dieterich D, Babb JS, Friedman SL, Taouli B (2016) Prospective comparison of magnetic resonance imaging to transient elastography and serum markers for liver fibrosis detection. Liver Int.  https://doi.org/10.1111/liv.13058 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ferraioli G, Wong VW-S, Castera L, Berzigotti A, Sporea I, Dietrich CF, Choi BI, Wilson SR, Kudo M, Barr RG (2018) Liver Ultrasound Elastography: An Update to the World Federation for Ultrasound in Medicine and Biology Guidelines and Recommendations. Ultrasound Med Biol.  https://doi.org/10.1016/j.ultrasmedbio.2018.07.008 CrossRefPubMedGoogle Scholar
  16. 16.
    Vallet-Pichard A, Mallet V, Nalpas B, Verkarre V, Nalpas A, Dhalluin-Venier V, Fontaine H, Pol S (2007) FIB-4: An inexpensive and accurate marker of fibrosis in HCV infection. Comparison with liver biopsy and FibroTest. Hepatology.  https://doi.org/10.1002/hep.21669 CrossRefPubMedGoogle Scholar
  17. 17.
    Wagner M, Corcuera-Solano I, Lo G, Esses S, Liao J, Besa C, Chen N, Abraham G, Fung M, Babb JS, Ehman RL, Taouli B (2017) Technical Failure of MR Elastography Examinations of the Liver: Experience from a Large Single-Center Study. Radiology.  https://doi.org/10.1148/radiol.2016160863 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM (2009) Principles, Techniques, and Applications of T2*-based MR Imaging and Its Special Applications. RadioGraphics.  https://doi.org/10.1148/rg.295095034 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ma X, Holalkere N-S, R AK, Mino-Kenudson M, Hahn PF, Sahani D V (2009) Imaging-based Quantification of Hepatic Fat: Methods and Clinical Applications. RadioGraphics 29:1253–1277.  https://doi.org/10.1148/rg.295085186 CrossRefPubMedGoogle Scholar
  20. 20.
    Sigrist RMS, Liau J, Kaffas A El, Chammas MC, Willmann JK (2017) Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 7:1303–1329.  https://doi.org/10.7150/thno.18650 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Samir AE, Dhyani M, Vij A, Bhan AK, Halpern EF, Méndez-Navarro J, Corey KE, Chung RT (2015) Shear-Wave Elastography for the Estimation of Liver Fibrosis in Chronic Liver Disease: Determining Accuracy and Ideal Site for Measurement. Radiology.  https://doi.org/10.1148/radiol.14140839 CrossRefPubMedGoogle Scholar
  22. 22.
    Barr RG, Ferraioli G, Palmeri ML, Goodman ZD, Garcia-Tsao G, Rubin J, Garra B, Myers RP, Wilson SR, Rubens D, Levine D (2015) Elastography Assessment of Liver Fibrosis: Society of Radiologists in Ultrasound Consensus Conference Statement. Radiology 276:845–861.  https://doi.org/10.1148/radiol.2015150619 CrossRefPubMedGoogle Scholar
  23. 23.
    Sheskin DJ (2007) Handbook of Parametric and Nonparametric Statistical Procedures, 4th ed. Chapman & Hall/CRCGoogle Scholar
  24. 24.
    Ashby D (1991) Practical statistics for medical research. Douglas G. Altman, Chapman and Hall, London, 1991. No. of pages: 611. Price: £32.00. Stat Med.  https://doi.org/10.1002/sim.4780101015 CrossRefGoogle Scholar
  25. 25.
    Cohen J (1968) Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull 70:213–220CrossRefGoogle Scholar
  26. 26.
    Gwet KL (2008) Computing inter-rater reliability and its variance in the presence of high agreement. Br J Math Stat Psychol 61:29–48.  https://doi.org/10.1348/000711006x126600 CrossRefPubMedGoogle Scholar
  27. 27.
    Pampel F (2000) Logistic RegressionCrossRefGoogle Scholar
  28. 28.
    Ichikawa S, Motosugi U, Morisaka H, Sano K, Ichikawa T, Tatsumi A, Enomoto N, Matsuda M, Fujii H, Onishi H (2015) Comparison of the diagnostic accuracies of magnetic resonance elastography and transient elastography for hepatic fibrosis. Magn Reson Imaging.  https://doi.org/10.1016/j.mri.2014.10.003 CrossRefPubMedGoogle Scholar
  29. 29.
    Afdhal NH, Bacon BR, Patel K, Lawitz EJ, Gordon SC, Nelson DR, Challies TL, Nasser I, Garg J, Wei L-J, McHutchison JG (2015) Accuracy of fibroscan, compared with histology, in analysis of liver fibrosis in patients with hepatitis B or C: a United States multicenter study. Clin Gastroenterol Hepatol 13:772–773.  https://doi.org/10.1016/j.cgh.2014.12.014 CrossRefPubMedGoogle Scholar
  30. 30.
    Yoneda M, Thomas E, Sclair SN, Grant TT, Schiff ER (2015) Supersonic Shear Imaging and Transient Elastography With the XL Probe Accurately Detect Fibrosis in Overweight or Obese Patients With Chronic Liver Disease. Clin Gastroenterol Hepatol 13:1502-1509.e5.  https://doi.org/10.1016/j.cgh.2015.03.014 CrossRefPubMedGoogle Scholar
  31. 31.
    Cassinotto C, Boursier J, de Ledinghen V, Lebigot J, Lapuyade B, Cales P, Hiriart J-B, Michalak S, Bail B Le, Cartier V, Mouries A, Oberti F, Fouchard-Hubert I, Vergniol J, Aube C (2016) Liver stiffness in nonalcoholic fatty liver disease: A comparison of supersonic shear imaging, FibroScan, and ARFI with liver biopsy. Hepatology 63:1817–1827.  https://doi.org/10.1002/hep.28394 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhuang Y, Ding H, Zhang Y, Sun H, Xu C, Wang W (2016) Two-dimensional Shear-Wave Elastography Performance in the Noninvasive Evaluation of Liver Fibrosis in Patients with Chronic Hepatitis B: Comparison with Serum Fibrosis Indexes. Radiology 283:873–882.  https://doi.org/10.1148/radiol.2016160131 CrossRefPubMedGoogle Scholar
  33. 33.
    Krishnamurthy R, Thompson BL, Shankar A, Gariepy CE, Potter CJ, Fung BR, Hu HH (2019) Magnetic Resonance Elastography of the Liver in Children and Adolescents: Assessment of Regional Variations in Stiffness. Acad Radiol.  https://doi.org/10.1016/j.acra.2019.07.009 CrossRefPubMedGoogle Scholar
  34. 34.
    Bende F, IoanSporea, Şirli R, Popescu A, Mare R, Miuţescu B, Lupuşoru R, Moga T, Pienar C (2017) Performance of 2D-SWE.GE for predicting different stages of liver fibrosis, using Transient Elastography as the reference method. Med Ultrason.  https://doi.org/10.11152/mu-910 CrossRefPubMedGoogle Scholar
  35. 35.
    Horowitz JM, Venkatesh SK, Ehman RL, Jhaveri K, Kamath P, Ohliger MA, Samir AE, Silva AC, Taouli B, Torbenson MS, Wells ML, Yeh B, Miller FH (2017) Evaluation of hepatic fibrosis: a review from the society of abdominal radiology disease focus panel. Abdom Radiol 42:2037–2053.  https://doi.org/10.1007/s00261-017-1211-7 CrossRefGoogle Scholar
  36. 36.
    Yin M, Glaser KJ, Talwalkar JA, Chen J, Manduca A, Ehman RL (2016) Hepatic MR Elastography: Clinical Performance in a Series of 1377 Consecutive Examinations. Radiology.  https://doi.org/10.1148/radiol.2015142141 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Castera L, Foucher J, Bernard P-H, Carvalho F, Allaix D, Merrouche W, Couzigou P, de Ledinghen V (2010) Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology 51:828–835.  https://doi.org/10.1002/hep.23425 CrossRefPubMedGoogle Scholar
  38. 38.
    Wong GL-H, Wong VW-S, Chim AM-L, Yiu KK-L, Chu SH-T, Li MK-P, Chan HL-Y (2011) Factors associated with unreliable liver stiffness measurement and its failure with transient elastography in the Chinese population. J Gastroenterol Hepatol 26:300–305.  https://doi.org/10.1111/j.1440-1746.2010.06510.x CrossRefPubMedGoogle Scholar
  39. 39.
    Wong VWS, Vergniol J, Wong GLH, Foucher J, Chan AWH, Chermak F, Choi PCL, Merrouche W, Chu SHT, Pesque S, Chan HLY, De Lédinghen V (2012) Liver stiffness measurement using XL probe in patients with nonalcoholic fatty liver disease. Am J Gastroenterol.  https://doi.org/10.1038/ajg.2012.331 CrossRefPubMedGoogle Scholar
  40. 40.
    Marques S, Carmo J, Túlio MA, Bispo M, Matos L, Chagas C (2015) Diagnostic Performance of Real-Time Elastography in the Assessment of Advanced Fibrosis in Chronic Hepatitis C. GE Port J Gastroenterol 23:13–18.  https://doi.org/10.1016/j.jpge.2015.10.008 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • João Matos
    • 1
    • 2
    Email author
  • Francesco Paparo
    • 1
  • Lorenzo Bacigalupo
    • 1
  • Giovanni Cenderello
    • 3
  • Ilaria Mussetto
    • 2
  • Matteo De Cesari
    • 2
  • Silvia Perugin Bernardi
    • 1
  • Luca Cevasco
    • 1
  • Gian Luca Forni
    • 4
  • Giovanni Cassola
    • 3
  • Gian Andrea Rollandi
    • 1
  1. 1.Unit of Radiology, Department of Diagnostic ImagingE.O. Ospedali GallieraGenoaItaly
  2. 2.DISSAL – Department of Health SciencesUniversity of GenoaGenoaItaly
  3. 3.Unit of Infectious DiseasesE.O. Ospedali GallieraGenoaItaly
  4. 4.Unit of Microcitemia and Hereditary AnemiasE.O. Ospedali GallieraGenoaItaly

Personalised recommendations