Advertisement

White paper on pancreatic ductal adenocarcinoma from society of abdominal radiology’s disease-focused panel for pancreatic ductal adenocarcinoma: Part II, update on imaging techniques and screening of pancreatic cancer in high-risk individuals

  • Naveen M. KulkarniEmail author
  • Lorenzo Mannelli
  • Marc Zins
  • Priya R. Bhosale
  • Hina Arif-Tiwari
  • Olga R. Brook
  • Elizabeth M. Hecht
  • Fay Kastrinos
  • Zhen Jane Wang
  • Erik V. Soloff
  • Parag P. Tolat
  • Guillermo Sangster
  • Jason Fleming
  • Eric P. Tamm
  • Avinash R. Kambadakone
Review

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive gastrointestinal malignancy with a poor 5-year survival rate. Its high mortality rate is attributed to its aggressive biology and frequently late presentation. While surgical resection remains the only potentially curative treatment, only 10–20% of patients will present with surgically resectable disease. Over the past several years, development of vascular bypass graft techniques and introduction of neoadjuvant treatment regimens have increased the number of patients who can undergo resection with a curative intent. While the role of conventional imaging in the detection, characterization, and staging of patients with PDAC is well established, its role in monitoring treatment response, particularly following neoadjuvant therapy remains challenging because of the complex anatomic and histological nature of PDAC. Novel morphologic and functional imaging techniques (such as DECT, DW-MRI, and PET/MRI) are being investigated to improve the diagnostic accuracy and the ability to measure response to therapy. There is also a growing interest to detect PDAC and its precursor lesions at an early stage in asymptomatic patients to increase the likelihood of achieving cure. This has led to the development of pancreatic cancer screening programs. This article will review recent updates in imaging techniques and the current status of screening and surveillance of individuals at a high risk of developing PDAC.

Keywords

Pancreatic ductal adenocarcinoma DECT DW-MRI PET/MR Pancreatic cancer screening 

Notes

Acknowledgements

The authors wish to thank the members of Society of Abdominal Radiology’s Disease-Focused Panel for Pancreatic Cancer for their suggestions and input in selecting the topics for the white paper (Ajit Goenka, MD, Alexander Guimares MD, PhD, Arnold Friedman, MD, Atif Zaheer, MD, David Hough, MB, ChB, Michael Rosenthal, MD, PhD, Namita Gandhi, MD, Ott Le, MD, Richard Do, MD, PhD, Zarine Shah, MD). We also wish to acknowledge Olivier Lucidarme, MD (Paris) for assistance with Fig. 6.

Compliance with ethical standards

Conflict of interest

All the authors declared that they have no conflict of interest.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin 2017;67(1):7-30.  https://doi.org/10.3322/caac.21387 CrossRefPubMedGoogle Scholar
  2. 2.
    NCCN clinical practice guidelines in oncology - Pancretic adenocarcinoma. V1.2019 - November 8, 2018. https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf. Published Accessed on 1/20/2019.
  3. 3.
    AJCC Cancer Staging Manual. Eighth Edition. Amin MB et al. New York: Springer 2017.Google Scholar
  4. 4.
    Katz MH, Fleming JB, Bhosale P, Varadhachary G, Lee JE, Wolff R, Wang H, Abbruzzese J, Pisters PW, Vauthey JN, Charnsangavej C, Tamm E, Crane CH, Balachandran A. Response of borderline resectable pancreatic cancer to neoadjuvant therapy is not reflected by radiographic indicators. Cancer 2012;118(23):5749-5756.  https://doi.org/10.1002/cncr.27636 CrossRefPubMedGoogle Scholar
  5. 5.
    Zins M, Matos C, Cassinotto C. Pancreatic Adenocarcinoma Staging in the Era of Preoperative Chemotherapy and Radiation Therapy. Radiology 2018;287(2):374-390.  https://doi.org/10.1148/radiol.2018171670 CrossRefPubMedGoogle Scholar
  6. 6.
    Morgan DE. Dual-energy CT of the abdomen. Abdom Imaging 2014;39(1):108-134.  https://doi.org/10.1007/s00261-013-0033-5 CrossRefPubMedGoogle Scholar
  7. 7.
    Kulkarni NM, Pinho DF, Kambadakone AR, Sahani DV. Emerging technologies in CT- radiation dose reduction and dual-energy CT. Semin Roentgenol 2013;48(3):192-202.  https://doi.org/10.1053/j.ro.2013.03.007 CrossRefPubMedGoogle Scholar
  8. 8.
    Kulkarni NM, Hough DM, Tolat PP, Soloff EV, Kambadakone AR. Pancreatic adenocarcinoma: cross-sectional imaging techniques. Abdom Radiol (NY) 2018;43(2):253-263.  https://doi.org/10.1007/s00261-017-1380-4 CrossRefGoogle Scholar
  9. 9.
    Lee YH, Park KK, Song HT, Kim S, Suh JS. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol 2012;22(6):1331-1340.  https://doi.org/10.1007/s00330-011-2370-5 CrossRefPubMedGoogle Scholar
  10. 10.
    Brook OR, Gourtsoyianni S, Brook A, Mahadevan A, Wilcox C, Raptopoulos V. Spectral CT with metal artifacts reduction software for improvement of tumor visibility in the vicinity of gold fiducial markers. Radiology 2012;263(3):696-705.  https://doi.org/10.1148/radiol.12111170 CrossRefPubMedGoogle Scholar
  11. 11.
    Quiney B, Harris A, McLaughlin P, Nicolaou S. Dual-energy CT increases reader confidence in the detection and diagnosis of hypoattenuating pancreatic lesions. Abdom Imaging 2015;40(4):859-864.  https://doi.org/10.1007/s00261-014-0254-2 CrossRefPubMedGoogle Scholar
  12. 12.
    Bhosale P, Le O, Balachandran A, Fox P, Paulson E, Tamm E. Quantitative and Qualitative Comparison of Single-Source Dual-Energy Computed Tomography and 120-kVp Computed Tomography for the Assessment of Pancreatic Ductal Adenocarcinoma. J Comput Assist Tomogr 2015;39(6):907-913.  https://doi.org/10.1097/rct.0000000000000295 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hardie AD, Picard MM, Camp ER, Perry JD, Suranyi P, De Cecco CN, Schoepf UJ, Wichmann JL. Application of an Advanced Image-Based Virtual Monoenergetic Reconstruction of Dual Source Dual-Energy CT Data at Low keV Increases Image Quality for Routine Pancreas Imaging. J Comput Assist Tomogr 2015;39(5):716-720.  https://doi.org/10.1097/rct.0000000000000276 CrossRefPubMedGoogle Scholar
  14. 14.
    He YL, Zhang DM, Xue HD, Jin ZY. Clinical Value of Dual-energy CT in Detection of Pancreatic Adenocarcinoma: Investigation of the Best Pancreatic Tumor Contrast to Noise Ratio. Chin Med Sci J 2013;27(4):207-212.CrossRefGoogle Scholar
  15. 15.
    McNamara MM, Little MD, Alexander LF, Carroll LV, Beasley TM, Morgan DE. Multireader evaluation of lesion conspicuity in small pancreatic adenocarcinomas: complimentary value of iodine material density and low keV simulated monoenergetic images using multiphasic rapid kVp-switching dual energy CT. Abdom Imaging 2015;40(5):1230-1240.  https://doi.org/10.1007/s00261-014-0274-y CrossRefPubMedGoogle Scholar
  16. 16.
    Patel BN, Thomas JV, Lockhart ME, Berland LL, Morgan DE. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast. Clin Radiol 2013;68(2):148-154.  https://doi.org/10.1016/j.crad.2012.06.108 CrossRefPubMedGoogle Scholar
  17. 17.
    Brook OR, Gourtsoyianni S, Brook A, Siewert B, Kent T, Raptopoulos V. Split-bolus spectral multidetector CT of the pancreas: assessment of radiation dose and tumor conspicuity. Radiology 2013;269(1):139-148.  https://doi.org/10.1148/radiol.13121409 CrossRefPubMedGoogle Scholar
  18. 18.
    Kawamoto S, Fuld MK, Laheru D, Huang P, Fishman EK. Assessment of iodine uptake by pancreatic cancer following chemotherapy using dual-energy CT. Abdom Radiol (NY) 2018;43(2):445-456.  https://doi.org/10.1007/s00261-017-1338-6 CrossRefGoogle Scholar
  19. 19.
    Noda Y, Goshima S, Miyoshi T, Kawada H, Kawai N, Tanahashi Y, Matsuo M. Assessing Chemotherapeutic Response in Pancreatic Ductal Adenocarcinoma: Histogram Analysis of Iodine Concentration and CT Number in Single-Source Dual-Energy CT. AJR Am J Roentgenol 2018;211(6):1221-1226.  https://doi.org/10.2214/ajr.18.19791 CrossRefPubMedGoogle Scholar
  20. 20.
    Chu AJ, Lee JM, Lee YJ, Moon SK, Han JK, Choi BI. Dual-source, dual-energy multidetector CT for the evaluation of pancreatic tumours. Br J Radiol 2012;85(1018):e891-898.  https://doi.org/10.1259/bjr/26129418 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Baliyan V, Kordbacheh H, Parakh A, Kambadakone A. Response assessment in pancreatic ductal adenocarcinoma: role of imaging. Abdom Radiol (NY) 2018;43(2):435-444.  https://doi.org/10.1007/s00261-017-1434-7 CrossRefGoogle Scholar
  22. 22.
    Mileto A, Mazziotti S, Gaeta M, Bottari A, Zimbaro F, Giardina C, Ascenti G. Pancreatic dual-source dual-energy CT: is it time to discard unenhanced imaging? Clin Radiol 2012;67(4):334-339.  https://doi.org/10.1016/j.crad.2011.09.004 CrossRefPubMedGoogle Scholar
  23. 23.
    De Cecco CN, Darnell A, Macias N, Ayuso JR, Rodriguez S, Rimola J, Pages M, Garcia-Criado A, Rengo M, Laghi A, Ayuso C. Virtual unenhanced images of the abdomen with second-generation dual-source dual-energy computed tomography: image quality and liver lesion detection. Invest Radiol 2013;48(1):1-9.  https://doi.org/10.1097/rli.0b013e31826e7902 CrossRefPubMedGoogle Scholar
  24. 24.
    Patel BN, Alexander L, Allen B, Berland L, Borhani A, Mileto A, Moreno C, Morgan D, Sahani D, Shuman W, Tamm E, Tublin M, Yeh B, Marin D. Dual-energy CT workflow: multi-institutional consensus on standardization of abdominopelvic MDCT protocols. Abdom Radiol (NY) 2017;42(3):676-687.  https://doi.org/10.1007/s00261-016-0966-6 CrossRefGoogle Scholar
  25. 25.
    Boos J, Fang J, Chingkoe CM, Perillo M, Smith M, Raptopoulos V, Brook OR. Split-Bolus Injection Producing Simultaneous Late Arterial and Portal Venous Phases in CT Enterography: Preliminary Results. AJR Am J Roentgenol 2017;209(5):1056-1063.  https://doi.org/10.2214/ajr.17.18034 CrossRefPubMedGoogle Scholar
  26. 26.
    Camacho A, Fang J, Cohen MP, Raptopoulos V, Brook OR. Split-bolus pancreas CTA protocol for local staging of pancreatic cancer and detection and characterization of liver lesions. Abdom Radiol (NY) 2018;43(2):340-350.  https://doi.org/10.1007/s00261-017-1350-x CrossRefGoogle Scholar
  27. 27.
    Chen FM, Ni JM, Zhang ZY, Zhang L, Li B, Jiang CJ. Presurgical Evaluation of Pancreatic Cancer: A Comprehensive Imaging Comparison of CT Versus MRI. AJR Am J Roentgenol 2016;206(3):526-535.  https://doi.org/10.2214/ajr.15.15236 CrossRefPubMedGoogle Scholar
  28. 28.
    Park HS, Lee JM, Choi HK, Hong SH, Han JK, Choi BI. Preoperative evaluation of pancreatic cancer: comparison of gadolinium-enhanced dynamic MRI with MR cholangiopancreatography versus MDCT. J Magn Reson Imaging 2009;30(3):586-595.  https://doi.org/10.1002/jmri.21889 CrossRefPubMedGoogle Scholar
  29. 29.
    Sandrasegaran K, Lin C, Akisik FM, Tann M. State-of-the-art pancreatic MRI. AJR Am J Roentgenol 2010;195(1):42-53.  https://doi.org/10.2214/ajr.195.3_supplement.0s42 CrossRefPubMedGoogle Scholar
  30. 30.
    Jha P, Yeh BM, Zagoria R, Collisson E, Wang ZJ. The Role of MR Imaging in Pancreatic Cancer. Magn Reson Imaging Clin N Am 2018;26(3):363-373.  https://doi.org/10.1016/j.mric.2018.03.004 CrossRefPubMedGoogle Scholar
  31. 31.
    Wood ML, Henkelman RM. Suppression of respiratory motion artifacts in magnetic resonance imaging. Med Phys 1986;13(6):794-805.  https://doi.org/10.1118/1.595851 CrossRefPubMedGoogle Scholar
  32. 32.
    Azevedo RM, de Campos RO, Ramalho M, Heredia V, Dale BM, Semelka RC. Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations. AJR Am J Roentgenol 2011;197(3):650-657.  https://doi.org/10.2214/ajr.10.5881 CrossRefPubMedGoogle Scholar
  33. 33.
    Semelka RC, Ascher SM. MR imaging of the pancreas. Radiology 1993;188(3):593-602.  https://doi.org/10.1148/radiology.188.3.8351317 CrossRefPubMedGoogle Scholar
  34. 34.
    Lee S, Kim SH, Park HK, Jang KT, Hwang JA, Kim S. Pancreatic Ductal Adenocarcinoma: Rim Enhancement at MR Imaging Predicts Prognosis after Curative Resection. Radiology 2018;288(2):456-466.  https://doi.org/10.1148/radiol.2018172331 CrossRefPubMedGoogle Scholar
  35. 35.
    Kartalis N, Lindholm TL, Aspelin P, Permert J, Albiin N. Diffusion-weighted magnetic resonance imaging of pancreas tumours. Eur Radiol 2009;19(8):1981-1990.  https://doi.org/10.1007/s00330-009-1384-8 CrossRefPubMedGoogle Scholar
  36. 36.
    Ichikawa T, Erturk SM, Motosugi U, Sou H, Iino H, Araki T, Fujii H. High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma: preliminary results. AJR Am J Roentgenol 2007;188(2):409-414.  https://doi.org/10.2214/ajr.05.1918 CrossRefPubMedGoogle Scholar
  37. 37.
    Niekel MC, Bipat S, Stoker J. Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology 2010;257(3):674-684.  https://doi.org/10.1148/radiol.10100729 CrossRefPubMedGoogle Scholar
  38. 38.
    Marion-Audibert AM, Vullierme MP, Ronot M, Mabrut JY, Sauvanet A, Zins M, Cuilleron M, Sa-Cunha A, Levy P, Rode A. Routine MRI With DWI Sequences to Detect Liver Metastases in Patients With Potentially Resectable Pancreatic Ductal Carcinoma and Normal Liver CT: A Prospective Multicenter Study. AJR Am J Roentgenol 2018;211(5):W217-W225.  https://doi.org/10.2214/ajr.18.1964 CrossRefPubMedGoogle Scholar
  39. 39.
    Riviere DM, van Geenen EJM, van der Kolk BM, Nagtegaal ID, Radema SA, van Laarhoven C, Hermans JJ. Improving preoperative detection of synchronous liver metastases in pancreatic cancer with combined contrast-enhanced and diffusion-weighted MRI. Abdom Radiol (NY) 2019.  https://doi.org/10.1007/s00261-018-1867-7 CrossRefGoogle Scholar
  40. 40.
    Balci NC, Perman WH, Saglam S, Akisik F, Fattahi R, Bilgin M. Diffusion-weighted magnetic resonance imaging of the pancreas. Top Magn Reson Imaging 2009;20(1):43-47.  https://doi.org/10.1097/rmr.0b013e3181b48667 CrossRefPubMedGoogle Scholar
  41. 41.
    Bozkurt M, Doganay S, Kantarci M, Yalcin A, Eren S, Atamanalp SS, Yuce I, Yildirgan MI. Comparison of peritoneal tumor imaging using conventional MR imaging and diffusion-weighted MR imaging with different b values. Eur J Radiol 2011;80(2):224-228.  https://doi.org/10.1016/j.ejrad.2010.06.004 CrossRefPubMedGoogle Scholar
  42. 42.
    Bali MA, Pullini S, Metens T, Absil J, Chao SL, Marechal R, Matos C, Peerboccus BM, Van Laethem JL. Assessment of response to chemotherapy in pancreatic ductal adenocarcinoma: Comparison between diffusion-weighted MR quantitative parameters and RECIST. Eur J Radiol 2018;104:49-57.  https://doi.org/10.1016/j.ejrad.2018.04.024 CrossRefPubMedGoogle Scholar
  43. 43.
    Dalah E, Erickson B, Oshima K, Schott D, Hall WA, Paulson E, Tai A, Knechtges P, Li XA. Correlation of ADC With Pathological Treatment Response for Radiation Therapy of Pancreatic Cancer. Transl Oncol 2018;11(2):391-398.  https://doi.org/10.1016/j.tranon.2018.01.018 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ruf J, Lopez Hanninen E, Bohmig M, Koch I, Denecke T, Plotkin M, Langrehr J, Wiedenmann B, Felix R, Amthauer H. Impact of FDG-PET/MRI image fusion on the detection of pancreatic cancer. Pancreatology 2006;6(6):512-519.  https://doi.org/10.1159/000096993 CrossRefPubMedGoogle Scholar
  45. 45.
    Yeh R, Dercle L, Garg I, Wang ZJ, Hough DM, Goenka AH. The Role of 18F-FDG PET/CT and PET/MRI in Pancreatic Ductal Adenocarcinoma. Abdom Radiol (NY) 2018;43(2):415-434.  https://doi.org/10.1007/s00261-017-1374-2 CrossRefGoogle Scholar
  46. 46.
    Broski SM, Goenka AH, Kemp BJ, Johnson GB. Clinical PET/MRI: 2018 Update. AJR Am J Roentgenol 2018;211(2):295-313.  https://doi.org/10.2214/ajr.18.20001 CrossRefPubMedGoogle Scholar
  47. 47.
    Joo I, Lee JM, Lee DH, Lee ES, Paeng JC, Lee SJ, Jang JY, Kim SW, Ryu JK, Lee KB. Preoperative Assessment of Pancreatic Cancer with FDG PET/MR Imaging versus FDG PET/CT Plus Contrast-enhanced Multidetector CT: A Prospective Preliminary Study. Radiology 2017;282(1):149-159.  https://doi.org/10.1148/radiol.2016152798 CrossRefPubMedGoogle Scholar
  48. 48.
    Niwa T, Ueno M, Ohkawa S, Yoshida T, Doiuchi T, Ito K, Inoue T. Advanced pancreatic cancer: the use of the apparent diffusion coefficient to predict response to chemotherapy. Br J Radiol 2009;82(973):28-34.  https://doi.org/10.1259/bjr/43911400 CrossRefPubMedGoogle Scholar
  49. 49.
    Cuneo KC, Chenevert TL, Ben-Josef E, Feng MU, Greenson JK, Hussain HK, Simeone DM, Schipper MJ, Anderson MA, Zalupski MM, Al-Hawary M, Galban CJ, Rehemtulla A, Feng FY, Lawrence TS, Ross BD. A pilot study of diffusion-weighted MRI in patients undergoing neoadjuvant chemoradiation for pancreatic cancer. Transl Oncol 2014;7(5):644-649.  https://doi.org/10.1016/j.tranon.2014.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Choi M, Heilbrun LK, Venkatramanamoorthy R, Lawhorn-Crews JM, Zalupski MM, Shields AF. Using 18F-fluorodeoxyglucose positron emission tomography to monitor clinical outcomes in patients treated with neoadjuvant chemo-radiotherapy for locally advanced pancreatic cancer. Am J Clin Oncol 2010;33(3):257-261.  https://doi.org/10.1097/coc.0b013e3181a76a0b CrossRefPubMedGoogle Scholar
  51. 51.
    Wang ZJ, Behr S, Consunji MV, Yeh BM, Ohliger MA, Gao K, Ko AH, Cinar P, Tempero MA, Collisson EA. Early Response Assessment in Pancreatic Ductal Adenocarcinoma Through Integrated PET/MRI. AJR Am J Roentgenol 2018;211(5):1010-1019.  https://doi.org/10.2214/ajr.18.19602 CrossRefPubMedGoogle Scholar
  52. 52.
    Chen BB, Tien YW, Chang MC, Cheng MF, Chang YT, Wu CH, Chen XJ, Kuo TC, Yang SH, Shih IL, Lai HS, Shih TT. PET/MRI in pancreatic and periampullary cancer: correlating diffusion-weighted imaging, MR spectroscopy and glucose metabolic activity with clinical stage and prognosis. Eur J Nucl Med Mol Imaging 2016;43(10):1753-1764.  https://doi.org/10.1007/s00259-016-3356-y CrossRefPubMedGoogle Scholar
  53. 53.
    Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ. CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics 2017;37(5):1483-1503.  https://doi.org/10.1148/rg.2017170056 CrossRefPubMedGoogle Scholar
  54. 54.
    Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, Ganeshan B, Miles KA, Cook GJ, Goh V. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 2012;3(6):573-589.  https://doi.org/10.1007/s13244-012-0196-6 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ganeshan B, Miles KA, Young RC, Chatwin CR. Hepatic entropy and uniformity: additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT. Clin Radiol 2007;62(8):761-768.  https://doi.org/10.1016/j.crad.2007.03.004 CrossRefPubMedGoogle Scholar
  56. 56.
    Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology 2013;266(1):326-336.  https://doi.org/10.1148/radiol.12112428 CrossRefPubMedGoogle Scholar
  57. 57.
    Miles KA, Ganeshan B, Griffiths MR, Young RC, Chatwin CR. Colorectal cancer: texture analysis of portal phase hepatic CT images as a potential marker of survival. Radiology 2009;250(2):444-452.  https://doi.org/10.1148/radiol.2502071879 CrossRefPubMedGoogle Scholar
  58. 58.
    Al-Kadi OS, Watson D. Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans Biomed Eng 2008;55(7):1822-1830.  https://doi.org/10.1109/tbme.2008.919735 CrossRefPubMedGoogle Scholar
  59. 59.
    Huang YL, Chen JH, Shen WC. Diagnosis of hepatic tumors with texture analysis in nonenhanced computed tomography images. Acad Radiol 2006;13(6):713-720.  https://doi.org/10.1016/j.acra.2005.07.014 CrossRefPubMedGoogle Scholar
  60. 60.
    Han F, Wang H, Zhang G, Han H, Song B, Li L, Moore W, Lu H, Zhao H, Liang Z. Texture feature analysis for computer-aided diagnosis on pulmonary nodules. J Digit Imaging 2015;28(1):99-115.  https://doi.org/10.1007/s10278-014-9718-8 CrossRefPubMedGoogle Scholar
  61. 61.
    Eilaghi A, Baig S, Zhang Y, Zhang J, Karanicolas P, Gallinger S, Khalvati F, Haider MA. CT texture features are associated with overall survival in pancreatic ductal adenocarcinoma - a quantitative analysis. BMC Med Imaging 2017;17(1):38.  https://doi.org/10.1186/s12880-017-0209-5 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Cassinotto C, Chong J, Zogopoulos G, Reinhold C, Chiche L, Lafourcade JP, Cuggia A, Terrebonne E, Dohan A, Gallix B. Resectable pancreatic adenocarcinoma: Role of CT quantitative imaging biomarkers for predicting pathology and patient outcomes. Eur J Radiol 2017;90:152-158.  https://doi.org/10.1016/j.ejrad.2017.02.033 CrossRefPubMedGoogle Scholar
  63. 63.
    Ciaravino V, Cardobi N, R DER, Capelli P, Melisi D, Simionato F, Marchegiani G, Salvia R, D’Onofrio M. CT Texture Analysis of Ductal Adenocarcinoma Downstaged After Chemotherapy. Anticancer Res 2018;38(8):4889-4895.  https://doi.org/10.21873/anticanres.12803 CrossRefGoogle Scholar
  64. 64.
    Choi MH, Lee YJ, Yoon SB, Choi JI, Jung SE, Rha SE. MRI of pancreatic ductal adenocarcinoma: texture analysis of T2-weighted images for predicting long-term outcome. Abdom Radiol (NY) 2019;44(1):122-130.  https://doi.org/10.1007/s00261-018-1681-2 CrossRefGoogle Scholar
  65. 65.
    Canto MI, Harinck F, Hruban RH, Offerhaus GJ, Poley JW, Kamel I, Nio Y, Schulick RS, Bassi C, Kluijt I, Levy MJ, Chak A, Fockens P, Goggins M, Bruno M, International Cancer of Pancreas Screening C. International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut 2013;62(3):339-347.  https://doi.org/10.1136/gutjnl-2012-303108 CrossRefGoogle Scholar
  66. 66.
    Decker GA, Batheja MJ, Collins JM, Silva AC, Mekeel KL, Moss AA, Nguyen CC, Lake DF, Miller LJ. Risk factors for pancreatic adenocarcinoma and prospects for screening. Gastroenterol Hepatol (N Y) 2010;6(4):246-254.Google Scholar
  67. 67.
    Canto MI, Almario JA, Schulick RD, Yeo CJ, Klein A, Blackford A, Shin EJ, Sanyal A, Yenokyan G, Lennon AM, Kamel IR, Fishman EK, Wolfgang C, Weiss M, Hruban RH, Goggins M. Risk of Neoplastic Progression in Individuals at High Risk for Pancreatic Cancer Undergoing Long-term Surveillance. Gastroenterology 2018;155(3):740-751 e742.  https://doi.org/10.1053/j.gastro.2018.05.035 CrossRefGoogle Scholar
  68. 68.
    Ngamruengphong S, Canto MI. Screening for Pancreatic Cancer. Surg Clin North Am 2016;96(6):1223-1233.  https://doi.org/10.1016/j.suc.2016.07.016 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Giardiello FM, Brensinger JD, Tersmette AC, Goodman SN, Petersen GM, Booker SV, Cruz-Correa M, Offerhaus JA. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 2000;119(6):1447-1453.CrossRefGoogle Scholar
  70. 70.
    Canto MI, Hruban RH, Fishman EK, Kamel IR, Schulick R, Zhang Z, Topazian M, Takahashi N, Fletcher J, Petersen G, Klein AP, Axilbund J, Griffin C, Syngal S, Saltzman JR, Mortele KJ, Lee J, Tamm E, Vikram R, Bhosale P, Margolis D, Farrell J, Goggins M, American Cancer of the Pancreas Screening C. Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology 2012;142(4):796-804; quiz e714-795.  https://doi.org/10.1053/j.gastro.2012.01.005 CrossRefGoogle Scholar
  71. 71.
    Traverso LW, Moriya T, Hashimoto Y. Intraductal papillary mucinous neoplasms of the pancreas: making a disposition using the natural history. Curr Gastroenterol Rep 2012;14(2):106-111.  https://doi.org/10.1007/s11894-012-0239-7 CrossRefPubMedGoogle Scholar
  72. 72.
    Mukewar SS, Sharma A, Phillip N, Gupta R, Aryal-Khanal A, de Pretis N, Anani V, Enders FT, Larson JJ, Takahashi N, Levy MJ, Topazian M, Pearson RK, Vege SS, Chari ST. Risk of Pancreatic Cancer in Patients With Pancreatic Cysts and Family History of Pancreatic Cancer. Clin Gastroenterol Hepatol 2018;16(7):1123-1130 e1121.  https://doi.org/10.1016/j.cgh.2018.01.049 CrossRefGoogle Scholar
  73. 73.
    Wada K, Takaori K, Traverso LW. Screening for Pancreatic Cancer. Surg Clin North Am 2015;95(5):1041-1052.  https://doi.org/10.1016/j.suc.2015.05.010 CrossRefPubMedGoogle Scholar
  74. 74.
    Lahat G, Ben Haim M, Nachmany I, Sever R, Blachar A, Nakache R, Klausner JM. Pancreatic incidentalomas: high rate of potentially malignant tumors. J Am Coll Surg 2009;209(3):313-319.  https://doi.org/10.1016/j.jamcollsurg.2009.05.009 CrossRefPubMedGoogle Scholar
  75. 75.
    Gangi S, Fletcher JG, Nathan MA, Christensen JA, Harmsen WS, Crownhart BS, Chari ST. Time interval between abnormalities seen on CT and the clinical diagnosis of pancreatic cancer: retrospective review of CT scans obtained before diagnosis. AJR Am J Roentgenol 2004;182(4):897-903.  https://doi.org/10.2214/ajr.182.4.1820897 CrossRefPubMedGoogle Scholar
  76. 76.
    Burk KS, Lo GC, Gee MS, Sahani DV. Imaging and Screening of Pancreatic Cancer. Radiol Clin North Am 2017;55(6):1223-1234.  https://doi.org/10.1016/j.rcl.2017.06.006 CrossRefPubMedGoogle Scholar
  77. 77.
    Frellesen C, Fessler F, Hardie AD, Wichmann JL, De Cecco CN, Schoepf UJ, Kerl JM, Schulz B, Hammerstingl R, Vogl TJ, Bauer RW. Dual-energy CT of the pancreas: improved carcinoma-to-pancreas contrast with a noise-optimized monoenergetic reconstruction algorithm. Eur J Radiol 2015;84(11):2052-2058.  https://doi.org/10.1016/j.ejrad.2015.07.020 CrossRefPubMedGoogle Scholar
  78. 78.
    Jeon JH, Kim JH, Joo I, Lee S, Choi SY, Han JK. Transabdominal Ultrasound Detection of Pancreatic Cysts Incidentally Detected at CT, MRI, or Endoscopic Ultrasound. AJR Am J Roentgenol 2018;210(3):518-525.  https://doi.org/10.2214/ajr.17.18449 CrossRefPubMedGoogle Scholar
  79. 79.
    Bhutani MS, Koduru P, Joshi V, Saxena P, Suzuki R, Irisawa A, Yamao K. The role of endoscopic ultrasound in pancreatic cancer screening. Endosc Ultrasound 2016;5(1):8-16.  https://doi.org/10.4103/2303-9027.175876 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kim YC, Choi JY, Chung YE, Bang S, Kim MJ, Park MS, Kim KW. Comparison of MRI and endoscopic ultrasound in the characterization of pancreatic cystic lesions. AJR Am J Roentgenol 2010;195(4):947-952.  https://doi.org/10.2214/ajr.09.3985 CrossRefPubMedGoogle Scholar
  81. 81.
    Mittal C, Obuch JC, Hammad H, Edmundowicz SA, Wani S, Shah RJ, Brauer BC, Attwell AR, Kaplan JB, Wagh MS. Technical feasibility, diagnostic yield, and safety of microforceps biopsies during EUS evaluation of pancreatic cystic lesions (with video). Gastrointest Endosc 2018;87(5):1263-1269.  https://doi.org/10.1016/j.gie.2017.12.025 CrossRefPubMedGoogle Scholar
  82. 82.
    Distler M, Kersting S, Niedergethmann M, Aust DE, Franz M, Ruckert F, Ehehalt F, Pilarsky C, Post S, Saeger HD, Grutzmann R. Pathohistological subtype predicts survival in patients with intraductal papillary mucinous neoplasm (IPMN) of the pancreas. Ann Surg 2013;258(2):324-330.  https://doi.org/10.1097/sla.0b013e318287ab73 CrossRefPubMedGoogle Scholar
  83. 83.
    Kamata K, Kitano M, Omoto S, Kadosaka K, Miyata T, Yamao K, Imai H, Sakamoto H, Harwani Y, Chikugo T, Chiba Y, Matsumoto I, Takeyama Y, Kudo M. Contrast-enhanced harmonic endoscopic ultrasonography for differential diagnosis of pancreatic cysts. Endoscopy 2016;48(1):35-41.  https://doi.org/10.1055/s-0034-1393564 CrossRefPubMedGoogle Scholar
  84. 84.
    Kawada N, Tanaka S. Elastography for the pancreas: Current status and future perspective. World J Gastroenterol 2016;22(14):3712-3724.  https://doi.org/10.3748/wjg.v22.i14.3712 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Kitano M, Yoshida T, Itonaga M, Tamura T, Hatamaru K, Yamashita Y. Impact of endoscopic ultrasonography on diagnosis of pancreatic cancer. J Gastroenterol 2019;54(1):19-32.  https://doi.org/10.1007/s00535-018-1519-2 CrossRefPubMedGoogle Scholar
  86. 86.
    Suenaga M, Yu J, Shindo K, Tamura K, Almario JA, Zaykoski C, Witmer PD, Fesharakizadeh S, Borges M, Lennon AM, Shin EJ, Canto MI, Goggins M. Pancreatic Juice Mutation Concentrations Can Help Predict the Grade of Dysplasia in Patients Undergoing Pancreatic Surveillance. Clin Cancer Res 2018;24(12):2963-2974.  https://doi.org/10.1158/1078-0432.ccr-17-2463 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Corral JE, Mareth KF, Riegert-Johnson DL, Das A, Wallace MB. Diagnostic Yield From Screening Asymptomatic Individuals at High Risk for Pancreatic Cancer: A Meta-analysis of Cohort Studies. Clin Gastroenterol Hepatol 2019;17(1):41-53.  https://doi.org/10.1016/j.cgh.2018.04.065 CrossRefPubMedGoogle Scholar
  88. 88.
    Joergensen MT, Gerdes AM, Sorensen J, Schaffalitzky de Muckadell O, Mortensen MB. Is screening for pancreatic cancer in high-risk groups cost-effective? - Experience from a Danish national screening program. Pancreatology 2016;16(4):584-592.  https://doi.org/10.1016/j.pan.2016.03.013 CrossRefGoogle Scholar
  89. 89.
    Lee MV, Katabathina VS, Bowerson ML, Mityul MI, Shetty AS, Elsayes KM, Balachandran A, Bhosale PR, McCullough AE, Menias CO. BRCA-associated Cancers: Role of Imaging in Screening, Diagnosis, and Management. Radiographics 2017;37(4):1005-1023.  https://doi.org/10.1148/rg.2017160144 CrossRefPubMedGoogle Scholar
  90. 90.
    Corrias G, Raeside MC, Agostini A, Huicochea-Castellanos S, Aramburu-Nunez D, Paudyal R, Shukla-Dave A, Smelianskaia O, Capanu M, Zheng J, Fung M, Kelsen DP, Mangino DA, Robson ME, Goldfrank DJ, Carter J, Allen PJ, Conti B, Monti S, Do RKG, Mannelli L. Pilot study of rapid MR pancreas screening for patients with BRCA mutation. Eur Radiol 2019.  https://doi.org/10.1007/s00330-018-5975-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Naveen M. Kulkarni
    • 1
    Email author
  • Lorenzo Mannelli
    • 2
  • Marc Zins
    • 3
  • Priya R. Bhosale
    • 4
  • Hina Arif-Tiwari
    • 5
  • Olga R. Brook
    • 6
  • Elizabeth M. Hecht
    • 7
  • Fay Kastrinos
    • 8
  • Zhen Jane Wang
    • 9
  • Erik V. Soloff
    • 10
  • Parag P. Tolat
    • 1
  • Guillermo Sangster
    • 11
  • Jason Fleming
    • 12
  • Eric P. Tamm
    • 4
  • Avinash R. Kambadakone
    • 13
  1. 1.Department of RadiologyMedical College of WisconsinMilwaukeeUSA
  2. 2.Diagnostic Medical ImagingIRCCS SDNNaplesItaly
  3. 3.Department of RadiologyGroupe Hospitalier Paris Saint-JosephParisFrance
  4. 4.Abdominal Imaging DepartmentThe University of Texas MD Anderson Cancer CenterHoustonUSA
  5. 5.Department of Medical ImagingUniversity of Arizona College of MedicineTucsonUSA
  6. 6.Department of RadiologyBeth Israel Deaconess Medical CenterBostonUSA
  7. 7.Department of RadiologyColumbia University Medical CenterNew YorkUSA
  8. 8.Division of Digestive and Liver Diseases, Department of MedicineColumbia University Medical CancerNew YorkUSA
  9. 9.Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoUSA
  10. 10.Department of RadiologyUniversity of WashingtonSeattleUSA
  11. 11.Department of RadiologyOchsner LSU Health ShreveportShreveportUSA
  12. 12.Gastrointestinal OncologyMoffitt Cancer CenterTampaUSA
  13. 13.Department of RadiologyMassachusetts General HospitalBostonUSA

Personalised recommendations