Advertisement

Superparamagnetic iron-oxide-enhanced diffusion-weighted magnetic resonance imaging for the diagnosis of intrapancreatic accessory spleen

  • Kousei IshigamiEmail author
  • Akihiro Nishie
  • Tomohiro Nakayama
  • Yoshiki Asayama
  • Daisuke Kakihara
  • Nobuhiro Fujita
  • Yasuhiro Ushijima
  • Daisuke Okamoto
  • Takao Ohtsuka
  • Yasuhisa Mori
  • Tetsuhide Ito
  • Naoki Mochidome
  • Hiroshi Honda
Pancreas
  • 3 Downloads

Abstract

Purpose

To evaluate the diagnostic performance of superparamagnetic iron-oxide (SPIO)-enhanced diffusion-weighted image (DWI) for distinguishing an intrapancreatic accessory spleen from pancreatic tumors.

Materials and methods

Twenty-six cases of intrapancreatic accessory spleen and nine cases of pancreatic tail tumors [neuroendocrine tumor (n = 8) and pancreatic adenocarcinoma (n = 1)] were analyzed. Two blind reviewers retrospectively reviewed the SPIO-enhanced magnetic resonance imaging (MRI) scans. The lesion visibility grades were compared and the diagnostic performance of SPIO-enhanced DWI was compared to those of SPIO-enhanced T2WI and T2*WI with the use of a receiver operating characteristic (ROC) analysis.

Results

The grade of lesion visibility was the highest on DWI [mean ± standard deviation (SD): 2.8 ± 0.3] followed by T2WI (2.3 ± 0.7, p < 0.001) and T2*WI (2.1 ± 0.7, p < 0.0001). Reviewers 1 and 2 correctly characterized the presence or absence of SPIO uptake in 34 of 35 cases (97.1%) on DWI, 24 (68.6%) and 25 (71.4%) cases on T2WI, respectively, and 16 (45.7%) and 17 (48.6%) cases on T2*WI. The area under the ROC curve (AUC) of DWI was 0.974 and 0.989 for reviewers 1 and 2, respectively. For Reviewer 1, the AUC of DWI was significantly higher than that of T2*WI (0.756, p < 0.01), although it was not significantly different from that of T2WI (0.868, p = 0.0857). For Reviewer 2, the AUC of DWI was significantly higher than those of T2WI (0.846, p < 0.05) and T2*WI (0.803, p < 0.01).

Conclusion

The diagnostic performance of SPIO-enhanced DWI was better than those of SPIO-enhanced T2*WI and T2WI for the diagnosis of intrapancreatic accessory spleen.

Keywords

Intrapancreatic accessory spleen Superparamagnetic iron oxide Diffusion-weighted image Pancreatic tumor Diagnostic performance 

Notes

References

  1. 1.
    Halpert B, Gyorkey F. Lesions observed in accessory spleens of 311 patients. Am J Clin Pathol. 1959 Aug;32(2):165-168.Google Scholar
  2. 2.
    Harris GN, Kase DJ, Bradnock H, Mckinley MJ. Accessory spleen causing a mass in the tail of the pancreas: MR imaging findings. AJR Am J Roentgenol. 1994 Nov;163(5):1120-1.Google Scholar
  3. 3.
    Churei H, Inoue H, Nakajo M. Intrapancreatic accessory spleen: case report. Abdom Imaging. 1998 Mar-Apr;23(2):191-3.Google Scholar
  4. 4.
    Rufini V, Inzani F, Stefanelli A, et al. The Accessory Spleen Is an Important Pitfall of 68 Ga-DOTANOC PET/CT in the Workup for Pancreatic Neuroendocrine Neoplasm. Pancreas. 2017 Feb;46(2):157-163.Google Scholar
  5. 5.
    Ota T, Tei M, Yoshioka A, et al. Intrapancreatic accessory spleen diagnosed by technetium-99 m heat-damaged red blood cell SPECT. J Nucl Med. 1997 Mar;38(3):494-5.Google Scholar
  6. 6.
    Ishigami K, Hammett B, Obuchi M, et al. Imaging of an accessory spleen presenting as a slow-growing mass in the transplanted pancreas. AJR Am J Roentgenol. 2004 Aug;183(2):405-7.Google Scholar
  7. 7.
    Boraschi P1, Donati F, Volpi A, Campori G. Intrapancreatic accessory spleen: diagnosis with RES-specific contrast-enhanced MRI. AJR Am J Roentgenol. 2005 May;184(5):1712-3.Google Scholar
  8. 8.
    Herédia V, Altun E, Bilaj F, Ramalho M, Hyslop BW, Semelka RC. Gadolinium- and superparamagnetic-iron-oxide-enhanced MR findings of intrapancreatic accessory spleen in five patients. Magn Reson Imaging. 2008 Nov;26(9):1273-8.Google Scholar
  9. 9.
    Kim SH, Lee JM, Han JK, et al. MDCT and superparamagnetic iron oxide (SPIO)-enhanced MR findings of intrapancreatic accessory spleen in seven patients. Eur Radiol. 2006 Sep;16(9):1887-97.Google Scholar
  10. 10.
    Kang BK, Kim JH, Byun JH, et al. Diffusion-weighted MRI: usefulness for differentiating intrapancreatic accessory spleen and small hypervascular neuroendocrine tumor of the pancreas. Acta Radiol. 2014 Dec;55(10):1157-65.Google Scholar
  11. 11.
    Jang KM, Kim SH, Lee SJ, Park MJ, Lee MH, Choi D. Differentiation of an intrapancreatic accessory spleen from a small (<3-cm) solid pancreatic tumor: value of diffusion-weighted MR imaging. Radiology. 2013 Jan;266(1):159-67.Google Scholar
  12. 12.
    Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC measurement of abdominal organs and lesions using parallel imaging technique. AJR Am J Roentgenol. 2006 Dec;187(6):1521-30.Google Scholar
  13. 13.
    Rosenkrantz AB, Oei M, Babb JS, Niver BE, Taouli B. Diffusion-weighted imaging of the abdomen at 3.0 Tesla: image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla. J Magn Reson Imaging. 2011 Jan;33(1):128-35.Google Scholar
  14. 14.
    Nishie A, Tajima T, Ishigami K, et al. Detection of hepatocellular carcinoma (HCC) using superparamagnetic iron oxide (SPIO)-enhanced MRI: Added value of diffusion-weighted imaging (DWI). J Magn Reson Imaging. 2010 Feb;31(2):373-382.Google Scholar
  15. 15.
    Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452-458.Google Scholar
  16. 16.
    Tanimoto A, Oshio K, Suematsu M, Pouliquen D, Stark DD. Relaxation effects of clustered particles. J Magn Reson Imaging. 2001 Jul;14(1):72-7.Google Scholar
  17. 17.
    Gomi T, Nagamoto M, Tsunoo M, Terada S, Terada H, Kohda E. Evaluation of the changes in signals from the spleen using ferucarbotran. Radiat Med. 2007 Apr;25(3):135-8.Google Scholar
  18. 18.
    Dromain C, Déandréis D, Scoazec JY, et al. Imaging of neuroendocrine tumors of the pancreas. Diagn Interv Imaging. 2016 Dec;97(12):1241-1257.Google Scholar
  19. 19.
    Motosugi U, Yamaguchi H, Ichikawa T, et al. Epidermoid cyst in intrapancreatic accessory spleen: radiological findings including superparamagnetic iron oxide-enhanced magnetic resonance imaging. J Comput Assist Tomogr. 2010 Mar-Apr;34(2):217-22.Google Scholar
  20. 20.
    Makino Y, Imai Y, Fukuda K, et al. Sonazoid-enhanced ultrasonography for the diagnosis of an intrapancreatic accessory spleen: a case report. J Clin Ultrasound. 2011 Jul;39(6):344-7.Google Scholar
  21. 21.
    Kim SH, Lee JM, Lee JY, Han JK, Choi BI. Contrast-enhanced sonography of intrapancreatic accessory spleen in six patients. AJR Am J Roentgenol. 2007 Feb;188(2):422-8.Google Scholar
  22. 22.
    Ishigami K, Abu-Yousef DM, Kao SC, Abu-Yousef MM. Comparison of 2 oral ultrasonography contrast agents: simethicone-coated cellulose and simethicone-water rotation in improving pancreatic visualization. Ultrasound Q. 2014 Jun;30(2):135-8.Google Scholar
  23. 23.
    Tatsas AD, Owens CL, Siddiqui MT, Hruban RH, Ali SZ. Fine-needle aspiration of intrapancreatic accessory spleen: cytomorphologic features and differential diagnosis. Cancer Cytopathol. 2012 Aug 25;120(4):261-268.Google Scholar
  24. 24.
    Saunders TA, Miller TR, Khanafshar E. Intrapancreatic accessory spleen: utilization of fine needle aspiration for diagnosis of a potential mimic of a pancreatic neoplasm. J Gastrointest Oncol. 2016 Apr;7(Suppl 1):S62-5.Google Scholar
  25. 25.
    Conway AB, Cook SM, Samad A, Attam R, Pambuccian SE. Large platelet aggregates in endoscopic ultrasound-guided fine-needle aspiration of the pancreas and peripancreatic region: a clue for the diagnosis of intrapancreatic or accessory spleen. Diagn Cytopathol. 2013 Aug;41(8):661-72.Google Scholar
  26. 26.
    Kato S, Mori H, Zakimi M, et al. Epidermoid Cyst in an Intrapancreatic Accessory Spleen: Case Report and Literature Review of the Preoperative Imaging Findings. Intern Med. 2016;55(23):3445-3452.Google Scholar
  27. 27.
    Kim YS, Cho JH. Rare nonneoplastic cysts of pancreas. Clin Endosc. 2015 Jan;48(1):31-38.Google Scholar
  28. 28.
    Wang YX. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J Gastroenterol. 2015 Dec 21;21(47):13400-13402.Google Scholar
  29. 29.
    Bashir MR1, Bhatti L, Marin D, Nelson RC. Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging. 2015 Apr;41(4):884-898.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kousei Ishigami
    • 1
    Email author
  • Akihiro Nishie
    • 1
  • Tomohiro Nakayama
    • 1
  • Yoshiki Asayama
    • 1
  • Daisuke Kakihara
    • 1
  • Nobuhiro Fujita
    • 1
  • Yasuhiro Ushijima
    • 1
  • Daisuke Okamoto
    • 1
  • Takao Ohtsuka
    • 2
  • Yasuhisa Mori
    • 2
  • Tetsuhide Ito
    • 3
  • Naoki Mochidome
    • 4
  • Hiroshi Honda
    • 1
  1. 1.Department of Clinical Radiology, Graduate School of Medical SciencesKyushu UniversityHigashi-kuJapan
  2. 2.Surgery and Oncology, Graduate School of Medical SciencesKyushu UniversityHigashi-kuJapan
  3. 3.Medicine and Bioregulatory Science, Graduate School of Medical SciencesKyushu UniversityHigashi-kuJapan
  4. 4.Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityHigashi-kuJapan

Personalised recommendations