Advertisement

Abdominal Radiology

, Volume 44, Issue 10, pp 3273–3284 | Cite as

Pictorial review on abdominal applications of ferumoxytol in MR imaging

  • Hamed Kordbacheh
  • Vinit Baliyan
  • Anushri Parakh
  • Gregory R. Wojtkiewicz
  • Sandeep Hedgire
  • Mukesh G. HarisinghaniEmail author
Review

Abstract

Though gadolinium-based contrast agents are the most widely used contrast media in MR for clinical use, problems with nephrogenic systemic fibrosis and tissue deposition render their safety debatable, at least in a selected patient population. Ferumoxytol has the potential to be used as an alternate contrast medium for various clinical applications across multiple organs. It has prolonged intravascular signal and delayed intracellular macrophage uptake which are unique properties compared to gadolinium-based agents. This pictorial review aims to review the current and potential clinical applications of ferumoxytol as a contrast agent in abdominal MR imaging.

Keywords

Magnetic resonance imaging Ferumoxytol USPIO Contrast media 

Notes

Funding

There is no source of funding for this review article.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Research C for DE and. Drug Safety and Availability - FDA Drug Safety Communication: FDA warns that gadolinium-based contrast agents (GBCAs) are retained in the body; requires new class warnings [Internet]. [cited 2018 Jul 28]. Available from: https://www.fda.gov/Drugs/DrugSafety/ucm589213.htm
  2. 2.
    Tedeschi E, Caranci F, Giordano F, Angelini V, Cocozza S, Brunetti A. Gadolinium retention in the body: what we know and what we can do. Radiol Med (Torino). 2017 Aug;122(8):589–600.CrossRefGoogle Scholar
  3. 3.
    Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, et al. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2010 Jan;30(1):15–35.CrossRefGoogle Scholar
  4. 4.
    Auerbach M, Chertow GM, Rosner M. Ferumoxytol for the treatment of iron deficiency anemia. Expert Rev Hematol. 2018 Sep 6;0(ja):null.Google Scholar
  5. 5.
    Bashir MR, Bhatti L, Marin D, Nelson RC. Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging JMRI. 2015 Apr;41(4):884–98.CrossRefGoogle Scholar
  6. 6.
    Toth GB, Varallyay CG, Horvath A, Bashir MR, Choyke PL, Daldrup-Link HE, et al. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int. 2017;92(1):47–66.CrossRefGoogle Scholar
  7. 7.
    Auerbach M, Strauss W, Auerbach S, Rineer S, Bahrain H. Safety and efficacy of total dose infusion of 1,020 mg of ferumoxytol administered over 15 min. Am J Hematol. 2013 Nov;88(11):944–7.CrossRefGoogle Scholar
  8. 8.
    Lu M, Cohen MH, Rieves D, Pazdur R. FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 2010 May;85(5):315–9.Google Scholar
  9. 9.
    Macdougall IC, Strauss WE, McLaughlin J, Li Z, Dellanna F, Hertel J. A randomized comparison of ferumoxytol and iron sucrose for treating iron deficiency anemia in patients with CKD. Clin J Am Soc Nephrol CJASN. 2014 Apr;9(4):705–12.CrossRefGoogle Scholar
  10. 10.
    Vadhan-Raj S, Strauss W, Ford D, Bernard K, Boccia R, Li J, et al. Efficacy and safety of IV ferumoxytol for adults with iron deficiency anemia previously unresponsive to or unable to tolerate oral iron. Am J Hematol. 2014 Jan;89(1):7–12.CrossRefGoogle Scholar
  11. 11.
    Schiller B, Bhat P, Sharma A. Safety and effectiveness of ferumoxytol in hemodialysis patients at 3 dialysis chains in the United States over a 12-month period. Clin Ther. 2014 Jan 1;36(1):70–83.CrossRefGoogle Scholar
  12. 12.
    Hetzel D, Strauss W, Bernard K, Li Z, Urboniene A, Allen LF. A Phase III, randomized, open-label trial of ferumoxytol compared with iron sucrose for the treatment of iron deficiency anemia in patients with a history of unsatisfactory oral iron therapy. Am J Hematol. 2014 Jun;89(6):646–50.CrossRefGoogle Scholar
  13. 13.
    Research C for DE and. Drug Safety and Availability - FDA Drug Safety Communication: FDA strengthens warnings and changes prescribing instructions to decrease the risk of serious allergic reactions with anemia drug Feraheme (ferumoxytol) [Internet]. [cited 2018 Jul 28]. Available from: https://www.fda.gov/Drugs/DrugSafety/ucm440138.htm
  14. 14.
    Neuwelt EA, Várallyay CG, Manninger S, Solymosi D, Haluska M, Hunt MA, et al. The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: a pilot study. Neurosurgery. 2007 Apr;60(4):601–11; discussion 611-612.Google Scholar
  15. 15.
    Hope MD, Hope TA, Zhu C, Faraji F, Haraldsson H, Ordovas KG, et al. Vascular Imaging With Ferumoxytol as a Contrast Agent. AJR Am J Roentgenol. 2015 Sep;205(3):W366-373.CrossRefGoogle Scholar
  16. 16.
    Storey P, Arbini AA. Bone marrow uptake of ferumoxytol: a preliminary study in healthy human subjects. J Magn Reson Imaging JMRI. 2014 Jun;39(6):1401–10.CrossRefGoogle Scholar
  17. 17.
    Storey P, Lim RP, Chandarana H, Rosenkrantz AB, Kim D, Stoffel DR, et al. MRI assessment of hepatic iron clearance rates after USPIO administration in healthy adults. Invest Radiol. 2012 Dec;47(12):717–24.CrossRefGoogle Scholar
  18. 18.
    Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann H-J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol. 2005 Nov;40(11):715–24.CrossRefGoogle Scholar
  19. 19.
    Knobloch G, Colgan T, Wiens CN, Wang X, Schubert T, Hernando D, et al. Relaxivity of Ferumoxytol at 1.5 T and 3.0 T. Invest Radiol. 2018 May;53(5):257–63.Google Scholar
  20. 20.
    Yang L-J. Big Mac Attack: Does It Play a Direct Role for Monocytes/Macrophages in Type 1 Diabetes? Diabetes. 2008 Nov;57(11):2922–3.CrossRefGoogle Scholar
  21. 21.
    Fu W, Wojtkiewicz G, Weissleder R, Benoist C, Mathis D. Early window of diabetes determinism in NOD mice, dependent on the complement receptor CRIg, identified by noninvasive imaging. Nat Immunol. 2012 Feb 26;13(4):361–8.CrossRefGoogle Scholar
  22. 22.
    Gaglia JL, Harisinghani M, Aganj I, Wojtkiewicz GR, Hedgire S, Benoist C, et al. Noninvasive mapping of pancreatic inflammation in recent-onset type-1 diabetes patients. Proc Natl Acad Sci. 2015 Feb 17;112(7):2139–44.CrossRefGoogle Scholar
  23. 23.
    Turvey SE, Swart E, Denis MC, Mahmood U, Benoist C, Weissleder R, et al. Noninvasive imaging of pancreatic inflammation and its reversal in type 1 diabetes. J Clin Invest. 2005 Sep;115(9):2454–61.CrossRefGoogle Scholar
  24. 24.
    Denis MC, Mahmood U, Benoist C, Mathis D, Weissleder R. Imaging inflammation of the pancreatic islets in type 1 diabetes. Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12634–9.CrossRefGoogle Scholar
  25. 25.
    Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. Nat Mater. 2014 Feb;13(2):125–38.CrossRefGoogle Scholar
  26. 26.
    Kaitha S, Bashir M, Ali T. Iron deficiency anemia in inflammatory bowel disease. World J Gastrointest Pathophysiol. 2015 Aug 15;6(3):62–72.CrossRefGoogle Scholar
  27. 27.
    Gasche C, Berstad A, Befrits R, Beglinger C, Dignass A, Erichsen K, et al. Guidelines on the diagnosis and management of iron deficiency and anemia in inflammatory bowel diseases. Inflamm Bowel Dis. 2007 Dec;13(12):1545–53.CrossRefGoogle Scholar
  28. 28.
    Ford DC, Dahl NV, Strauss WE, Barish CF, Hetzel DJ, Bernard K, et al. Ferumoxytol versus placebo in iron deficiency anemia: efficacy, safety, and quality of life in patients with gastrointestinal disorders. Clin Exp Gastroenterol. 2016 Jul 11;9:151–62.Google Scholar
  29. 29.
    Hetzel D, Strauss W, Bernard K, Li Z, Urboniene A, Allen LF. A Phase III, randomized, open-label trial of ferumoxytol compared with iron sucrose for the treatment of iron deficiency anemia in patients with a history of unsatisfactory oral iron therapy. Am J Hematol. 2014 Jun;89(6):646–50.CrossRefGoogle Scholar
  30. 30.
    Moy MP, Sauk J, Gee MS. The Role of MR Enterography in Assessing Crohn’s Disease Activity and Treatment Response [Internet]. Gastroenterology Research and Practice. 2016 [cited 2018 Jun 30]. Available from: https://www.hindawi.com/journals/grp/2016/8168695/
  31. 31.
    Wu Y, Briley-Saebo K, Xie J, Zhang R, Wang Z, He C, et al. Inflammatory Bowel Disease: MR- and SPECT/CT-based Macrophage Imaging for Monitoring and Evaluating Disease Activity in Experimental Mouse Model—Pilot Study. Radiology. 2014 Jan 15;271(2):400–7.CrossRefGoogle Scholar
  32. 32.
    Talmadge JE, Donkor M, Scholar E. Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev. 2007 Dec 1;26(3–4):373–400.CrossRefGoogle Scholar
  33. 33.
    Jakubowska K, Kisielewski W, Kańczuga-Koda L, Koda M, Famulski W. Diagnostic value of inflammatory cell infiltrates, tumor stroma percentage and disease-free survival in patients with colorectal cancer. Oncol Lett. 2017 Sep;14(3):3869–77.CrossRefGoogle Scholar
  34. 34.
    Steele CW, Kaur Gill NA, Jamieson NB, Carter CR. Targeting inflammation in pancreatic cancer: Clinical translation. World J Gastrointest Oncol. 2016 Apr 15;8(4):380–8.CrossRefGoogle Scholar
  35. 35.
    Hedgire SS, Mino-Kenudson M, Elmi A, Thayer S, Fernandez-del Castillo C, Harisinghani MG. Enhanced primary tumor delineation in pancreatic adenocarcinoma using ultrasmall super paramagnetic iron oxide nanoparticle-ferumoxytol: an initial experience with histopathologic correlation. Int J Nanomedicine. 2014;9:1891–6.CrossRefGoogle Scholar
  36. 36.
    Ganeshalingam S, Koh D-M. Nodal staging. Cancer Imaging. 2009 Dec 24;9(1):104–11.CrossRefGoogle Scholar
  37. 37.
    Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology. 1990 May;175(2):489–93.CrossRefGoogle Scholar
  38. 38.
    Weissleder R, Elizondo G, Wittenberg J, Lee AS, Josephson L, Brady TJ. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology. 1990 May;175(2):494–8.CrossRefGoogle Scholar
  39. 39.
    Hudgins PA, Anzai Y, Morris MR, Lucas MA. Ferumoxtran-10, a superparamagnetic iron oxide as a magnetic resonance enhancement agent for imaging lymph nodes: a phase 2 dose study. AJNR Am J Neuroradiol. 2002 Apr;23(4):649–56.Google Scholar
  40. 40.
    Bourrinet P, Bengele HH, Bonnemain B, Dencausse A, Idee J-M, Jacobs PM, et al. Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest Radiol. 2006 Mar;41(3):313–24.CrossRefGoogle Scholar
  41. 41.
    Harisinghani M, Ross RW, Guimaraes AR, Weissleder R. Utility of a new bolus-injectable nanoparticle for clinical cancer staging. Neoplasia N Y N. 2007 Dec;9(12):1160–5.CrossRefGoogle Scholar
  42. 42.
    Hedgire SS, Oei TN, McDermott S, Cao K, Patel M Z, Harisinghani MG. Multiparametric magnetic resonance imaging of prostate cancer. Indian J Radiol Imaging. 2012 Jul;22(3):160–9.CrossRefGoogle Scholar
  43. 43.
    Tabatabaei S, Harisinghani M, McDougal WS. Regional lymph node staging using lymphotropic nanoparticle enhanced magnetic resonance imaging with ferumoxtran-10 in patients with penile cancer. J Urol. 2005 Sep;174(3):923–7; discussion 927.Google Scholar
  44. 44.
    Zhang F, Zhu L, Huang X, Niu G, Chen X. Differentiation of reactive and tumor metastatic lymph nodes with diffusion-weighted and SPIO-enhanced MRI. Mol Imaging Biol MIB Off Publ Acad Mol Imaging. 2013 Feb;15(1):40–7.CrossRefGoogle Scholar
  45. 45.
    Weissleder R, Elizondo G, Josephson L, Compton CC, Fretz CJ, Stark DD, et al. Experimental lymph node metastases: enhanced detection with MR lymphography. Radiology. 1989 Jun;171(3):835–9.CrossRefGoogle Scholar
  46. 46.
    Kallianos K, Henry TS, Yeghiazarians Y, Zimmet J, Shunk KA, Tseng EE, et al. Ferumoxytol MRA for transcatheter aortic valve replacement planning with renal insufficiency. Int J Cardiol. 2017 Mar 15;231:255–7.CrossRefGoogle Scholar
  47. 47.
    Nguyen K-L, Moriarty JM, Plotnik AN, Aksoy O, Yoshida T, Shemin RJ, et al. Ferumoxytol-enhanced MR Angiography for Vascular Access Mapping before Transcatheter Aortic Valve Replacement in Patients with Renal Impairment: A Step Toward Patient-specific Care. Radiology. 2018;286(1):326–37.CrossRefGoogle Scholar
  48. 48.
    Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006 Apr 18;47(8 Suppl):C13-18.CrossRefGoogle Scholar
  49. 49.
    MA3RS Study Investigators. Aortic Wall Inflammation Predicts Abdominal Aortic Aneurysm Expansion, Rupture, and Need for Surgical Repair. Circulation. 2017 Aug 29;136(9):787–97.Google Scholar
  50. 50.
    Hedgire S, Krebill C, Wojtkiewicz GR, Oliveira I, Ghoshhajra BB, Hoffmann U, et al. Ultrasmall superparamagnetic iron oxide nanoparticle uptake as noninvasive marker of aortic wall inflammation on MRI: proof of concept study. Br J Radiol. 2018 Dec;91(1092):20180461.CrossRefGoogle Scholar
  51. 51.
    MacDONALD RA, Mallory GK. Hemochromatosis and Hemosiderosis: Study of 211 Autopsied Cases. AMA Arch Intern Med. 1960 May 1;105(5):686–700.CrossRefGoogle Scholar
  52. 52.
    Drakonaki E, Papakonstantinou O, Maris T, Vasiliadou A, Papadakis A, Gourtsoyiannis N. Adrenal glands in beta-thalassemia major: magnetic resonance (MR) imaging features and correlation with iron stores. Eur Radiol. 2005 Dec;15(12):2462–8.CrossRefGoogle Scholar
  53. 53.
    Gunn AJ, Seethamraju RT, Hedgire S, Elmi A, Daniels GH, Harisinghani MG. Imaging behavior of the normal adrenal on ferumoxytol-enhanced MRI: preliminary findings. AJR Am J Roentgenol. 2013 Jul;201(1):117–21.CrossRefGoogle Scholar
  54. 54.
    Gultepe E, Reynoso FJ, Jhaveri A, Kulkarni P, Nagesha D, Ferris C, et al. Monitoring of magnetic targeting to tumor vasculature through MRI and biodistribution. Nanomed. 2010 Oct;5(8):1173–82.CrossRefGoogle Scholar
  55. 55.
    Hayano K, Miura F, Wada K, Suzuki K, Takeshita K, Amano H, et al. Diffusion-weighted MR imaging of pancreatic cancer and inflammation: Prognostic significance of pancreatic inflammation in pancreatic cancer patients. Pancreatology. 2016 Jan 1;16(1):121–6.CrossRefGoogle Scholar
  56. 56.
    Finn JP, Nguyen K-L, Han F, Zhou Z, Salusky I, Ayad I, et al. Cardiovascular MRI with ferumoxytol. Clin Radiol. 2016 Aug;71(8):796–806.CrossRefGoogle Scholar
  57. 57.
    Singh A, Patel T, Hertel J, Bernardo M, Kausz A, Brenner L. Safety of Ferumoxytol in Patients With Anemia and CKD. Am J Kidney Dis. 2008 Nov 1;52(5):907–15.CrossRefGoogle Scholar
  58. 58.
    Adkinson NF, Strauss WE, Macdougall IC, Bernard KE, Auerbach M, Kaper RF, et al. Comparative safety of intravenous ferumoxytol versus ferric carboxymaltose in iron deficiency anemia: A randomized trial. Am J Hematol. 93(5):683–90.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Radiology, Harvard Medical SchoolMassachusetts General HospitalBostonUSA
  2. 2.Division of Cardiovascular Imaging, Harvard Medical SchoolMassachusetts General HospitalBostonUSA
  3. 3.Center for Systems Biology, Harvard Medical SchoolMassachusetts General HospitalBostonUSA

Personalised recommendations