Advertisement

Abdominal Radiology

, Volume 44, Issue 10, pp 3252–3262 | Cite as

Comparison of two small bowel distending agents for enterography in pediatric small bowel imaging

  • Amy B. KolbeEmail author
  • Leonard A. Haas
  • David J. Bartlett
  • Veena R. Iyer
  • Kristen B. Thomas
  • Jeanne Tung
  • Jeff L. Fidler
  • Joel G. Fletcher
Hollow Organ GI

Abstract

Objective

To evaluate the ability of pediatric patients with known or suspected inflammatory bowel disease to ingest a new oral distending agent at CT or MR enterography (CTE/MRE), and to determine the impact on small bowel (SB) distension and diagnostic confidence.

Materials and methods

The study design is that of retrospective review of pediatric patients who underwent CTE or MRE from January 2014 to June 2016. Patients ingested low-concentration barium suspension or flavored beverage containing sorbitol and mannitol. The need for nasogastric tube (NGT) administration, amount ingested, emesis, distal extent of contrast, SB distension, terminal ileum (TI) transverse dimension, and diagnostic confidence in TI disease were assessed. Three radiologists each blindly reviewed a subset of the studies.

Results

Of the total 591 scans in 504 patients, 316 scans used low-concentration barium suspension and 275 scans flavored beverage. Nearly all consumed the entire amount (97% vs. 96%). Low-concentration barium suspension exams required NGT more often (7% [23/316] vs. 1% [3/275]; p < 0.0003), and tended to have more emesis (3% [9/316] vs. 1% [3/275]; p = 0.13). Diagnostic confidence score was nearly identical (p = 0.94). Qualitative and quantitative analyses showed no difference in SB distension, except for distension of mid-ileum (flavored beverage > low-concentration barium suspension; p = 0.02). Flavored beverage exams demonstrated a slight increase in distal extent of luminal distension (p = 0.02).

Conclusions

A new flavored beverage distends small bowel as well as low-concentration barium suspension, with decreased requirement for NGT insertion and improved distal extent of luminal distension, and without any decrease in diagnostic confidence in the presence or the absence of TI disease.

Keywords

Enterography Pediatric Crohn’s disease Oral contrast Enteric contrast 

Notes

Acknowledgements

The authors would like to acknowledge Alicia Woodward for her contributions to the chart review.

Compliance with ethical standards

Conflicts of interest

The authors have no conflicts of interest related to this work.

References

  1. 1.
    Paulsen SR, Huprich JE, Fletcher JG, Booya F, Young BM, Fidler JL, Johnson CD, Barlow JM, Earnest Ft (2006) CT enterography as a diagnostic tool in evaluating small bowel disorders: review of clinical experience with over 700 cases. Radiographics 26 (3):641-657; discussion 657-662.  https://doi.org/10.1148/rg.263055162
  2. 2.
    Huprich JE, Fletcher JG, Alexander JA, Fidler JL, Burton SS, McCullough CH (2008) Obscure gastrointestinal bleeding: evaluation with 64-section multiphase CT enterography--initial experience. Radiology 246 (2):562-571CrossRefGoogle Scholar
  3. 3.
    Huprich JE, Fletcher JG (2009) CT enterography: principles, technique and utility in Crohn's disease. Eur J Radiol 69 (3):393-397.  https://doi.org/10.1016/j.ejrad.2008.11.014 CrossRefGoogle Scholar
  4. 4.
    Costa-Silva L, Brandao AC (2013) MR enterography for the assessment of small bowel diseases. Magn Reson Imaging Clin N Am 21 (2):365-383.  https://doi.org/10.1016/j.mric.2013.01.005 CrossRefGoogle Scholar
  5. 5.
    Bruining DH, Zimmermann EM, Loftus EV, Sandborn WJ, Sauer CG, Strong SA (2018) Consensus Recommendations for Evaluation, Interpretation, and Utilization of Computed Tomography and Magnetic Resonance Enterography in Patients With Small Bowel Crohn’s Disease. GastroenterologyGoogle Scholar
  6. 6.
    Mansuri I, Fletcher JG, Bruining DH, Kolbe AB, Fidler JL, Samuel S, Tung J (2017) Endoscopic Skipping of the Terminal Ileum in Pediatric Crohn Disease. American Journal of Roentgenology 208 (6):W216-W224.  https://doi.org/10.2214/AJR.16.16575 CrossRefGoogle Scholar
  7. 7.
    Masselli G, Gualdi G (2012) MR imaging of the small bowel. Radiology 264 (2):333-348.  https://doi.org/10.1148/radiol.12111658 CrossRefGoogle Scholar
  8. 8.
    Gore R MG, Caroline D (2008) Crohn’s disease of the small bowel. In: Gore R LM (ed) Textbook of gastrointestinal radiology. 3rd ed edn. Saunders Elsevier, Philadelphia, Pa, pp 781–806Google Scholar
  9. 9.
    Algin O, Evrimler S, Ozmen E, Metin MR, Ocakoglu G, Ersoy O, Karaoglanoglu M, Arslan H (2013) A novel biphasic oral contrast solution for enterographic studies. J Comput Assist Tomogr 37 (1):65-74.  https://doi.org/10.1097/RCT.0b013e318276b585 CrossRefGoogle Scholar
  10. 10.
    Wong J, Roger M, Moore H (2015) Performance of two neutral oral contrast agents in CT enterography. J Med Imaging Radiat Oncol 59 (1):34-38.  https://doi.org/10.1111/1754-9485.12256 CrossRefGoogle Scholar
  11. 11.
    Wong J, Moore H, Roger M, McKee C (2016) CT enterography: Mannitol versus VoLumen. J Med Imaging Radiat Oncol 60 (5):593-598.  https://doi.org/10.1111/1754-9485.12486 CrossRefGoogle Scholar
  12. 12.
    Ajaj W, Goyen M, Schneemann H, Kuehle C, Nuefer M, Ruehm SG, Goehde SC, Lauenstein TC (2005) Oral contrast agents for small bowel distension in MRI: influence of the osmolarity for small bowel distention. Eur Radiol 15 (7):1400-1406.  https://doi.org/10.1007/s00330-005-2711-3 CrossRefGoogle Scholar
  13. 13.
    Ajaj W, Goehde SC, Schneemann H, Ruehm SG, Debatin JF, Lauenstein TC (2004) Oral contrast agents for small bowel MRI: comparison of different additives to optimize bowel distension. Eur Radiol 14 (3):458-464.  https://doi.org/10.1007/s00330-003-2177-0 CrossRefGoogle Scholar
  14. 14.
    AAjaj W, Goehde SC, Schneemann H, Ruehm SG, Debatin JF, Lauenstein TC (2004) Dose optimization of mannitol solution for small bowel distension in MRI. J Magn Reson Imaging 20 (4):648-653.  https://doi.org/10.1002/jmri.20166 CrossRefGoogle Scholar
  15. 15.
    Leduc F, De A, Rebello R, Muhn N, Ioannidis G (2015) A Comparative Study of Four Oral Contrast Agents for Small Bowel Distension with Computed Tomography Enterography. Can Assoc Radiol J 66 (2):140-144.  https://doi.org/10.1016/j.carj.2014.05.004 CrossRefGoogle Scholar
  16. 16.
    LimLim BK, Bux SI, Rahmat K, Lam SY, Liew YW (2012) Evaluation of bowel distension and mural visualisation using neutral oral contrast agents for multidetector-row computed tomography. Singapore Med J 53 (11):732-736Google Scholar
  17. 17.
    Kolbe AB, Fletcher JG, Froemming AT, Sheedy SP, Koo CW, Pundi K, Bruining DH, Tung J, Harmsen WS, Barlow JM, Fidler JL (2016) Evaluation of Patient Tolerance and Small-Bowel Distention With a New Small-Bowel Distending Agent for Enterography. AJR Am J Roentgenol 206 (5):994-1002.  https://doi.org/10.2214/ajr.15.15260 CrossRefGoogle Scholar
  18. 18.
    Young BM, Fletcher JG, Booya F, Paulsen S, Fidler J, Johnson CD, Huprich J, Barlow J, Trout A (2008) Head-to-head comparison of oral contrast agents for cross-sectional enterography: small bowel distention, timing, and side effects. J Comput Assist Tomogr 32 (1):32-38.  https://doi.org/10.1097/RCT.0b013e318061961d CrossRefGoogle Scholar
  19. 19.
    Lomas DJ, Graves MJ (1999) Small bowel MRI using water as a contrast medium. The British Journal of Radiology 72 (862):994-997.  https://doi.org/10.1259/bjr.72.862.10673951 CrossRefGoogle Scholar
  20. 20.
    Minowa O, Ozaki Y, Kyogoku S, Shindoh N, Sumi Y, Katayama H (1999) MR imaging of the small bowel using water as a contrast agent in a preliminary study with healthy volunteers. AJR Am J Roentgenol 173 (3):581-582.  https://doi.org/10.2214/ajr.173.3.10470883 CrossRefGoogle Scholar
  21. 21.
    Thompson SE, Raptopoulos V, Sheiman RL, McNicholas MM, Prassopoulos P (1999) Abdominal helical CT: milk as a low-attenuation oral contrast agent. Radiology 211 (3):870-875.  https://doi.org/10.1148/radiology.211.3.r99jn25870 CrossRefGoogle Scholar
  22. 22.
    Lauenstein TC, Schneemann H, Vogt FM, Herborn CU, Ruhm SG, Debatin JF (2003) Optimization of oral contrast agents for MR imaging of the small bowel. Radiology 228 (1):279-283.  https://doi.org/10.1148/radiol.2281020161 CrossRefGoogle Scholar
  23. 23.
    Baker ME, Hara AK, Platt JF, Maglinte DD, Fletcher JG (2015) CT enterography for Crohn's disease: optimal technique and imaging issues. Abdom Imaging 40 (5):938-952.  https://doi.org/10.1007/s00261-015-0357-4 CrossRefGoogle Scholar
  24. 24.
    Grand DJ, Guglielmo FF, Al-Hawary MM (2015) MR enterography in Crohn's disease: current consensus on optimal imaging technique and future advances from the SAR Crohn's disease-focused panel. Abdom Imaging 40 (5):953-964.  https://doi.org/10.1007/s00261-015-0361-8 CrossRefGoogle Scholar
  25. 25.
    Absah I, Bruining DH, Matsumoto JM, Weisbrod AJ, Fletcher JG, Fidler JL, Faubion WA (2012) MR Enterography in Pediatric Inflammatory Bowel Disease: Retrospective Assessment of Patient Tolerance, Image Quality, and Initial Performance Estimates. American Journal of Roentgenology 199 (3):W367-W375.  https://doi.org/10.2214/ajr.11.8363 CrossRefGoogle Scholar
  26. 26.
    ACR–SAR–SPR practice parameter for the performance of computed tomography (CT) enterography (2015).Google Scholar
  27. 27.
    ACR–SAR–SPR practice parameter for the performance of magnetic resonance (MR) enterography (2015).Google Scholar
  28. 28.
    Koo CW, Shah-Patel LR, Baer JW, Frager DH (2008) Cost-Effectiveness and Patient Tolerance of Low-Attenuation Oral Contrast Material: Milk Versus VoLumen. American Journal of Roentgenology 190 (5):1307-1313.  https://doi.org/10.2214/ajr.07.3193 CrossRefGoogle Scholar
  29. 29.
    Dillman JR, Towbin AJ, Imbus R, Young J, Gates E, Trout AT (2018) Comparison of Two Neutral Oral Contrast Agents in Pediatric Patients: A Prospective Randomized Study. Radiology:173039Google Scholar
  30. 30.
    Dillman JR, Ladino-Torres MF, Adler J, DeMatos-Malliard V, McHugh JB, Khalatbari S, Strouse PJ (2011) Comparison of MR enterography and histopathology in the evaluation of pediatric Crohn disease. Pediatric Radiology 41 (12):1552-1558.  https://doi.org/10.1007/s00247-011-2186-0 CrossRefGoogle Scholar
  31. 31.
    Vernier–Massouille G, Balde M, Salleron J, Turck D, Dupas JL, Mouterde O, Merle V, Salomez JL, Branche J, Marti R, Lerebours É, Cortot A, Gower–Rousseau C, Colombel JF (2008) Natural History of Pediatric Crohn's Disease: A Population-Based Cohort Study. Gastroenterology 135 (4):1106-111.  https://doi.org/10.1053/j.gastro.2008.06.079 CrossRefGoogle Scholar
  32. 32.
    Duricova D, Burisch J, Jess T, Gower-Rousseau C, Lakatos PL (2014) Age-related differences in presentation and course of inflammatory bowel disease: an update on the population-based literature. Journal of Crohn's & colitis 8 (11):1351-1361.  https://doi.org/10.1016/j.crohns.2014.05.006 CrossRefGoogle Scholar
  33. 33.
    Church PC, Greer M-LC, Cytter-Kuint R, Doria AS, Griffiths AM, Turner D, Walters TD, Feldman BM (2017) Magnetic resonance enterography has good inter-rater agreement and diagnostic accuracy for detecting inflammation in pediatric Crohn disease. Pediatric radiology 47 (5):565-575CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of RadiologyMayo ClinicRochesterUSA
  2. 2.Department of PediatricsWeill Cornell Medical College-New York Presbyterian HospitalNew YorkUSA
  3. 3.Mayo Clinic School of MedicineRochesterUSA
  4. 4.Division of Pediatric GastroenterologyOklahoma University Children’s PhysiciansOklahomaUSA

Personalised recommendations