Imaging features of immune-mediated genitourinary disease

  • Jonathon WeberEmail author
  • Nancy Hammond
  • Vahid Yaghmai
  • Paul Nikolaidis
  • Frank Miller
  • Jeanne Horowitz



Imaging features of immune-mediated genitourinary diseases often overlap, and the same disease may manifest in different ways, so understanding imaging findings in the context of the patient’s entire clinical picture is important in providing the correct diagnosis.


In this article, diseases mediated by the immune system which affect the genitourinary system are reviewed. Examples of immune-mediated genitourinary disease including IgG4-related disease, post-transplant lymphoproliferative disorder, immunodeficiency-associated lymphoproliferative disorder due to immunosuppressive and immunomodulatory medications, lymphoma, leukemia, myeloma, amyloidosis, and histiocytosis.


Clinical and imaging features will be presented which may help narrow the differential diagnosis for each disease.


Recognition of immune-related genitourinary disease is important for appropriate medical management as they may mimic other diseases both by imaging and clinical presentation.


Genitourinary Immune-mediated PTLD Lymphoma IgG4 Leukemia 



  1. 1.
    Hedgire, S.S., et al., The spectrum of IgG4-related disease in the abdomen and pelvis. AJR Am J Roentgenol, 2013. 201(1): p. 14-22Google Scholar
  2. 2.
    Mann, S., et al., Recognizing IgG4-related tubulointerstitial nephritis. Can J Kidney Health Dis, 2016. 3: p. 34Google Scholar
  3. 3.
    Della-Torre E, Lanzillotta M., Doglioni C, Immunology of IgG4-related disease. Clin Exp Immunol, 2015. 181(2): p. 191-206Google Scholar
  4. 4.
    Bledsoe, J.R., et al., IgG4-related disease: review of the histopathologic features, differential diagnosis, and therapeutic approach. APMIS, 2018. 126(6): p. 459-476Google Scholar
  5. 5.
    Stone, J.H., Y. Zen, and V. Deshpande, IgG4-related disease. N Engl J Med, 2012. 366(6): p. 539-51Google Scholar
  6. 6.
    Saeki, T., et al., The clinical course of patients with IgG4-related kidney disease. Kidney Int, 2013. 84(4): p. 826-33.Google Scholar
  7. 7.
    Wallace, Z.S., et al., IgG4-Related Disease: Clinical and Laboratory Features in One Hundred Twenty-Five Patients. Arthritis Rheumatol, 2015. 67(9): p. 2466-75Google Scholar
  8. 8.
    Takahashi, N., et al., Renal involvement in patients with autoimmune pancreatitis: CT and MR imaging findings. Radiology, 2007. 242(3): p. 791-801Google Scholar
  9. 9.
    Kim B, Kim J., Byun JH, et al, IgG4-related kidney disease: MRI findings with emphasis on the usefulness of diffusionweighted imaging. Eur J Radiol, 2014. 83: p. 1057-1062.Google Scholar
  10. 10.
    Maruyama S, Sato Y., Taga A, Emoto I, Shirase T, Haga H, Immunoglobulin G4-related disease presenting as bilateral ovarian masses and mimicking advanced ovarian cancer. J Obstet Gynaecol Res, 2016. 42(1): p. 103-8.Google Scholar
  11. 11.
    Ohkubo, H., et al., A rare case of IgG4-related disease involving the uterus. Rheumatology (Oxford), 2015. 54(6): p. 1124-5Google Scholar
  12. 12.
    Hara, N., et al., The role of naftopidil in the management of benign prostatic hyperplasia. Ther Adv Urol, 2013. 5(2): p. 111-9Google Scholar
  13. 13.
    Hara, N., et al., Lower urinary tract symptoms in patients with Niigata Minamata disease: a case-control study 50 years after methyl mercury pollution. Int J Urol, 2013. 20(6): p. 610-5Google Scholar
  14. 14.
    Migita, K., et al., IgG4-related epididymo-orchitis associated with bladder cancer: possible involvement of BAFF/BAFF-R interaction in IgG4-related urogenital disease. Mod Rheumatol, 2014. 24(1): p. 188-94Google Scholar
  15. 15.
    Taniguchi, T., et al., A case of multifocal fibrosclerosis involving posterior mediastinal fibrosis, retroperitoneal fibrosis, and a left seminal vesicle with elevated serum IgG4. Hum Pathol, 2006. 37(9): p. 1237-9; author reply 1239.Google Scholar
  16. 16.
    Zaidan, M., et al., The case mid R: a 69-year-old man with a 10-year history of idiopathic retroperitoneal fibrosis. Kidney Int, 2011. 80(12): p. 1379-80Google Scholar
  17. 17.
    Opelz, G. and R. Henderson, Incidence of non-Hodgkin lymphoma in kidney and heart transplant recipients. Lancet, 1993. 342(8886-8887): p. 1514-6Google Scholar
  18. 18.
    Opelz, G. and B. Dohler, Lymphomas after solid organ transplantation: a collaborative transplant study report. Am J Transplant, 2004. 4(2): p. 222-30Google Scholar
  19. 19.
    Bhatia S, Ramsay N., Steinbuch M, Dusenbery KE, Shapiro RS, Weisdorf DJ, et al, Malignant neoplasms following bone marrow transplantation. Blood, 1996. 87(9): p. 3633-3639.Google Scholar
  20. 20.
    Cockfield, S.M., Identifying the patient at risk for post-transplant lymphoproliferative disorder. Transpl Infect Dis, 2001. 3(2): p. 70-8Google Scholar
  21. 21.
    Loren, A.W., et al., Post-transplant lymphoproliferative disorder: a review. Bone Marrow Transplant, 2003. 31(3): p. 145-55Google Scholar
  22. 22.
    McDonald, R.A., et al., Incidence of PTLD in pediatric renal transplant recipients receiving basiliximab, calcineurin inhibitor, sirolimus and steroids. Am J Transplant, 2008. 8(5): p. 984-9Google Scholar
  23. 23.
    Shapiro, R., et al., Posttransplant lymphoproliferative disorders in adult and pediatric renal transplant patients receiving tacrolimus-based immunosuppression. Transplantation, 1999. 68(12): p. 1851-4.Google Scholar
  24. 24.
    Dharnidharka, V.R., CComprehensive Review of Post-Organ Transplant Hematologic Cancers. Am J Transplant, 2017Google Scholar
  25. 25.
    Quinlan, S.C., et al., Risk factors for early-onset and late-onset post-transplant lymphoproliferative disorder in kidney recipients in the United States. Am J Hematol, 2011. 86(2): p. 206-9Google Scholar
  26. 26.
    Al-Mansour, Z., B.P. Nelson, and A.M. Evens, Post-transplant lymphoproliferative disease (PTLD): risk factors, diagnosis, and current treatment strategies. Curr Hematol Malig Rep, 2013. 8(3): p. 173-83Google Scholar
  27. 27.
    Katabathina, V., et al., Complications of Immunosuppressive Therapy in Solid Organ Transplantation. Radiol Clin North Am, 2016. 542): p. 303-19Google Scholar
  28. 28.
    Scarsbrook, A.F., et al., Post-transplantation lymphoproliferative disorder: the spectrum of imaging appearances. Clin Radiol, 2005. 60(1): p. 47-55Google Scholar
  29. 29.
    Vrachliotis, T.G., et al., CT findings in posttransplantation lymphoproliferative disorder of renal transplants. AJR Am J Roentgenol, 2000. 175(1): p. 183-8Google Scholar
  30. 30.
    R. Lopez-Ben, J.K.S., C.E. Kew II, et al., Focal posttransplantation lymphoproliferative disorder at renal allograft hilum. AJR Am J Roentgenol, 2000. 175: p. 1417-1422.Google Scholar
  31. 31.
    Metser, U. and G. Lo, FDG-PET/CT in abdominal post-transplant lymphoproliferative disease. Br J Radiol, 2016. 89(1057): p. 20150844Google Scholar
  32. 32.
    Barrington, S.F., et al., Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol, 2014. 32(27): p. 3048-58.Google Scholar
  33. 33.
    Vali R, P.A., Bajno L, Moineddin R, Shammas A., The value of 18F-FDG PET in pediatric patients with post-transplant lymphoproliferative disorder at initial diagnosis. Pediatr Transplant, 2015. 19(8): p. 932-9.Google Scholar
  34. 34.
    Vali R, Punnett A., Bajno L, Moineddin R, Shammas A., The value of 18F-FDG PET in pediatric patients with post-transplant lymphoproliferative disorder at initial diagnosis. Pediatr Transplant, 2015. 19(8): p. 932-9Google Scholar
  35. 35.
    Inoue T, S. Satoh, Saito M, Horikawa Y, Tsuchiya N, Habuchi T, Post-transplant lymphoproliferative disorder involving the ovary as an initial manifestation: a case report. Journal of Medical Case Reports., 2010(4): p. 184.Google Scholar
  36. 36.
    Loo, E.Y., et al., Classical Hodgkin lymphoma arising in the setting of iatrogenic immunodeficiency: a clinicopathologic study of 10 cases. Am J Surg Pathol, 2013. 37(8): p. 1290-7Google Scholar
  37. 37.
    Kubica, M.G. and N.A. Sangle, Latrogenic immunodeficiency-associated lymphoproliferative disorders in transplant and nontransplant settings. Indian J Pathol Microbiol, 2016. 59(1): p. 6-15Google Scholar
  38. 38.
    Kamel OW (1997) Iatrogenic lymphoproliferative disorders in nontransplantation settings. Semin Diagn Pathol 14(1):27–34Google Scholar
  39. 39.
    Ohkura Y, S.J., Haruta S, et al., Primary Adrenal Lymphoma Possibly Associated With Epstein-Barr Virus Reactivation Due to Immunosuppression Under Methotrexate Therapy. Medicine, 2015. 94(31): p. 1270.Google Scholar
  40. 40.
    Key Statistics for Non-Hodgkin’s Lymphoma. 2018 [cited 2019 1/4/2019]; Available from:
  41. 41.
    Chen L, Richendollar B., Bunting S, Campbell S, Zhou M., Lymphomas and lymphoproliferative disorders clinically presenting as renal carcinoma: a clinicopathological study of 14 cases. Pathology, 2013. 45(7): p. 756-53.Google Scholar
  42. 42.
    Sandrasegaran, K., et al., Imaging features of haematological malignancies of kidneys. Clin Radiol, 2016. 71(3): p. 195-202Google Scholar
  43. 43.
    Bach, A.G., et al., Prevalence and patterns of renal involvement in imaging of malignant lymphoproliferative diseases. Acta Radiol, 2012. 53(3): p. 343-8Google Scholar
  44. 44.
    Sheth S, Ali S., Fishman E., Imaging of renal lymphoma: patterns of disease with pathologic correlation. Radiographics, 2006. 26(4): p. 1151-1168.Google Scholar
  45. 45.
    Emad-Eldin S, Rakha S., Hanna AZ, Badawy H, Usefulness of diffusion-weighted magnetic resonance imaging for the characterization of benign and malignant renal lesions. The Egyptian Journal of Radiology and Nuclear Medicine, 2015. 47: p. 325-333.Google Scholar
  46. 46.
    Dai, Z., et al., Primary follicular non-Hodgkin's lymphoma of the ureter: A case report and literature review. Oncol Lett, 2016. 11(6): p. 3939-3942Google Scholar
  47. 47.
    Ni, B.W., et al., Malignant lymphoma of the ureter: A case report and literature review. Exp Ther Med, 2014. 7(6): p. 1521-1524Google Scholar
  48. 48.
    Crasta JA, Vallikad E., Ovarian Lymphoma. Indian J Med Pediatr Oncol, 2009. 30(1): p. 28-30Google Scholar
  49. 49.
    Zhou, L., et al., Primary adrenal lymphoma: radiological; pathological, clinical correlation. Eur J Radiol, 2012. 81(3): p. 401-5Google Scholar
  50. 50.
    Thakore P, A.S., Turner C, Vaslyeva T, Acute Lymphocytic Leukemia with Bilateral Renal Masses Masquerading as Nephroblastomatosis. Case reports in pediatrics, 2015. 2015.Google Scholar
  51. 51.
    Luciano, R.L. and U.C. Brewster, Kidney involvement in leukemia and lymphoma. Adv Chronic Kidney Dis, 2014. 21(1): p. 27-35Google Scholar
  52. 52.
    Lanore, J.J., et al., Hemodialysis for acute renal failure in patients with hematologic malignancies. Crit Care Med, 1991. 19(3): p. 346-51Google Scholar
  53. 53.
    Richmond, J., et al., Renal lesions associated with malignant lymphomas. Am J Med, 1962. 32: p. 184-207Google Scholar
  54. 54.
    Araki, T., Leukemic involvement of the kidney in children: CT features. J Comput Assist Tomogr, 1982. 6(4): p. 781-4Google Scholar
  55. 55.
    Greenstein, F., et al., Ureteral obstruction from isolated focus of chronic lymphocytic leukemia. Urology, 1984. 24(1): p. 70-2Google Scholar
  56. 56.
    Bogdan, C.A., et al., Chronic lymphocytic leukemia with prostate infiltration mediated by specific clonal membrane-bound IgM. Cancer Res, 2003. 63(9): p. 2067-71Google Scholar
  57. 57.
    Mazzu, D., R.B. Jeffrey, Jr., and P.W. Ralls, Lymphoma and leukemia involving the testicles: findings on gray-scale and color Doppler sonography. AJR Am J Roentgenol, 1995. 164(3): p. 645-7Google Scholar
  58. 58.
    Geetha N, Lali V., Mathews A, Prakash NP., Acute lymphoblastic leukaemia presenting with a uterine cervical mass. Clin Cancer Investig J, 2015. 4: p. 280-281.Google Scholar
  59. 59.
    Oliva E, Ferry J., Young RH, Prat J, Srigley JR, Scully RE, Granulocytic sarcoma of the female genital tract: A clinicopathologic study of 11 cases. Am J Surg Pathol, 1997. 21: p. 1156-65.Google Scholar
  60. 60.
    Valbuena, J.R., et al., Myeloid sarcoma involving the testis. Am J Clin Pathol, 2005. 124(3): p. 445-52Google Scholar
  61. 61.
    Zago, L.B., et al., Testicular myeloid sarcoma: case report. Rev Bras Hematol Hemoter, 2013. 35(1): p. 68-70Google Scholar
  62. 62.
    Rajkumar, S.V., Updated Diagnostic Criteria and Staging System for Multiple Myeloma. Am Soc Clin Oncol Educ Book, 2016. 35: p. e418-23Google Scholar
  63. 63.
    Oshima, K., et al., Clinical and pathologic findings in 52 consecutively autopsied cases with multiple myeloma. Am J Hematol, 2001. 67(1): p. 1-5Google Scholar
  64. 64.
    Philips, S., et al., Abdominal manifestations of extraosseous myeloma: cross-sectional imaging spectrum. J Comput Assist Tomogr, 2012. 36(2): p. 207-12Google Scholar
  65. 65.
    Kapadia, S.B., Multiple myeloma: a clinicopathologic study of 62 consecutively autopsied cases. Medicine (Baltimore), 1980. 59(5): p. 380-92Google Scholar
  66. 66.
    Birjawi, G.A., et al., Abdominal manifestations of multiple myeloma: a retrospective radiologic overview. Clin Lymphoma Myeloma, 2008. 8(6): p. 348-51Google Scholar
  67. 67.
    IIgel, T.C., et al., Renal plasmacytoma: Mayo Clinic experience and review of the literature. Urology, 1991. 37(4): p. 385-9Google Scholar
  68. 68.
    Sedlic, A., et al., Abdominal extraosseous lesions of multiple myeloma: imaging findings. Can Assoc Radiol J, 2014. 65(1): p. 2-8Google Scholar
  69. 69.
    Yang, G. F., Zhu, H., Zhang, L. J., & Lu, G. M, Primary renal plasmacytoma: Case report and literature review. J Cancer Res Exp Oncol., 2009. 2 Google Scholar
  70. 70.
    Sered, S. and P. Nikolaidis, CT findings of perirenal plasmacytoma. AJR Am J Roentgenol, 2003. 181(3): p. 888Google Scholar
  71. 71.
    Li, Y., et al., Beyond Prostate Adenocarcinoma: Expanding the Differential Diagnosis in Prostate Pathologic Conditions. Radiographics, 2016. 36(4): p. 1055-75Google Scholar
  72. 72.
    Mimura, R., et al., Extramedullary plasmacytoma involving perirenal space accompanied by extramedullary hematopoiesis and amyloid deposition. Japanese Journal of Radiology, 2010. 28(4): p. 309-13Google Scholar
  73. 73.
    Jinzaki, M., et al., Role of computed tomography urography in the clinical evaluation of upper tract urothelial carcinoma. International Journal of Urology, 2016. 23(4): p. 284-98Google Scholar
  74. 74.
    Fitzpatrick, R., et al., Primary amyloidosis of the bladder; a mimicker of bladder cancer. Canadian Journal of Urology, 2017. 24(3): p. 8868-8870Google Scholar
  75. 75.
    Levine, E., Abdominal visceral calcification in secondary amyloidosis: CT findings. Abdom Imaging, 1994. 19(6): p. 554-5Google Scholar
  76. 76.
    Kim, B., et al., Imaging of the seminal vesicle and vas deferens. Radiographics, 2009. 29(4): p. 1105-21Google Scholar
  77. 77.
    Stephens, M., et al., Intense Uptake in Amyloidosis of the Seminal Vesicles on 68Ga-PSMA PET Mimicking Locally Advanced Prostate Cancer. Clinical Nuclear Medicine, 2017. 42(2): p. 147-148Google Scholar
  78. 78.
    Ogawa, Y., M. Nakagawa, and S. Ikeda, Prostate amyloid tumor is a clue leading to the diagnosis of systemic AL amyloidosis. Amyloid, 2013. 20(3): p. 193-4Google Scholar
  79. 79.
    Casella, R., et al., Primary testicular amyloidosis mimicking tumor in a cryptorchid testis. Urology, 2002. 59(3): p. 445Google Scholar
  80. 80.
    Winkler, D.D., J.A. Emery, and C.B. Alan, Amyloidosis of the endometrium: an asymptomatic presentation. Obstetrics & Gynecology, 2004. 104(5 Pt 2): p. 1144-7Google Scholar
  81. 81.
    Mar, W.A., et al., Rosai–Dorfman Disease: Manifestations Outside of the Head and Neck. AJR Am J Roentgenol, 2017. 208(4): p. 721-732Google Scholar
  82. 82.
    Brown, W.E., F.V. Coakley, and M. Heaney, Renal involvement by Rosai–Dorfman disease: CT findings. Abdom Imaging, 2002. 27(2): p. 214-6Google Scholar
  83. 83.
    Rodriguez Torres, C., et al., Rosai–Dorfman disease with atypical intrascrotal involvement. Int J Urol, 2015. 22(8): p. 794-6Google Scholar
  84. 84.
    Alberti, N., et al., Erdheim–Chester disease: a rare diagnosis with evocative imaging. Diagnostic and Interventional Imaging, 2013. 94(4): p. 457-9Google Scholar
  85. 85.
    Arnaud, L., et al., Systemic perturbation of cytokine and chemokine networks in Erdheim–Chester disease: a single-center series of 37 patients. Blood, 2011. 117(10): p. 2783-90Google Scholar
  86. 86.
    Balink, H., et al., Scintigraphic diagnosis of Erdheim–Chester disease. Journal of Clinical Oncology, 2011. 29(16): p. e470-2Google Scholar
  87. 87.
    Yun, E.J., et al., Erdheim–Chester disease: case report and review of associated urological, radiological and histological features. Journal of Urology, 2003. 169(4): p. 1470-1Google Scholar
  88. 88.
    Courtillot, C., et al., Endocrine Manifestations in a Monocentric Cohort of 64 Patients With Erdheim–Chester Disease. Journal of Clinical Endocrinology & Metabolism, 2016. 101(1): p. 305-13Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of RadiologyNorthwestern Memorial HospitalChicagoUSA

Personalised recommendations