Advertisement

Intra-individual comparison of conventional and simultaneous multislice-accelerated diffusion-weighted imaging in upper abdominal solid organs: value of ADC normalization using the spleen as a reference organ

  • Weon Jang
  • Ji Soo SongEmail author
  • Hyo Sung Kwak
  • Seung Bae Hwang
  • Mun Young Paek
Hepatobiliary
  • 4 Downloads

Abstract

Purpose

To compare the apparent diffusion coefficient (ADC) value of conventional diffusion-weighted imaging (cDWI) to simultaneous multislice-accelerated DWI (sDWI) and to evaluate the possibility of ADC normalization using the spleen as a reference organ.

Methods

We retrospectively evaluated 92 patients (68 men, 24 women; mean age 60.0 years) who underwent liver magnetic resonance imaging (MRI) including both cDWI and sDWI. sDWI was obtained with an acceleration factor of 2. ADC values were measured from the right liver lobe, left liver lobe, spleen, pancreas, right kidney, and left kidney. ADC values of the spleen were used for normalization. Paired sample t test, Pearson’s correlation coefficient, and Bland–Altman method were used for statistical analysis.

Results

ADC values of cDWI were significantly lower than sDWI in all six anatomic regions (p < 0.001). The mean difference in ADC value between cDWI and sDWI ranged from 0.048 to 0.125 × 10−3 mm2/s. ADC values from cDWI and sDWI showed a moderate to very high positive correlation (p < 0.001). After ADC normalization using the spleen as a reference organ, there was no significant difference between normalized ADC of cDWI and sDWI in all 5 anatomic regions (p = 0.11 − 0.74).

Conclusions

Normalization of ADC using the spleen could be useful for comparing upper abdominal organs acquired with either cDWI or sDWI in longitudinal and follow-up studies.

Keywords

Diffusion magnetic resonance imaging Magnetic resonance imaging Spleen Abdomen 

Notes

Acknowledgements

The authors thank Wade Martin of Emareye Medical Editing Service for his assistance in editing the article.

Funding

None to be declared by any of the authors.

References

  1. 1.
    Patterson DM, Padhani AR, Collins DJ. Technology insight: water diffusion MRI--a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol. 2008;5(4):220-33.Google Scholar
  2. 2.
    Bharwani N, Koh DM. Diffusion-weighted imaging of the liver: an update. Cancer imaging : the official publication of the International Cancer Imaging Society. 2013;13:171-85.Google Scholar
  3. 3.
    Wagner M, Doblas S, Daire JL, Paradis V, Haddad N, Leitao H, et al. Diffusion-weighted MR imaging for the regional characterization of liver tumors. Radiology. 2012;264(2):464-72.Google Scholar
  4. 4.
    Bains LJ, Zweifel M, Thoeny HC. Therapy response with diffusion MRI: an update. Cancer Imaging. 2012;12:395-402.Google Scholar
  5. 5.
    Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology. 2010;254(1):47-66.Google Scholar
  6. 6.
    Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188(6):1622-35.Google Scholar
  7. 7.
    Thoeny HC, De Keyzer F. Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur Radiol. 2007;17(6):1385-93.Google Scholar
  8. 8.
    Parikh T, Drew SJ, Lee VS, Wong S, Hecht EM, Babb JS, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology. 2008;246(3):812-22.Google Scholar
  9. 9.
    Jerome NP, Orton MR, d'Arcy JA, Collins DJ, Koh DM, Leach MO. Comparison of free-breathing with navigator-controlled acquisition regimes in abdominal diffusion-weighted magnetic resonance images: Effect on ADC and IVIM statistics. J Magn Reson Imaging. 2014;39(1):235-40.Google Scholar
  10. 10.
    Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA. Simultaneous multislice (SMS) imaging techniques. Magn Reson Med. 2016;75(1):63-81.Google Scholar
  11. 11.
    Filli L, Ghafoor S, Kenkel D, Liu W, Weiland E, Andreisek G, et al. Simultaneous multi-slice readout-segmented echo planar imaging for accelerated diffusion-weighted imaging of the breast. Eur J Radiol. 2016;85(1):274-78.Google Scholar
  12. 12.
    Lau AZ, Tunnicliffe EM, Frost R, Koopmans PJ, Tyler DJ, Robson MD. Accelerated human cardiac diffusion tensor imaging using simultaneous multislice imaging. Magn Reson Med. 2015;73(3):995-1004.Google Scholar
  13. 13.
    Obele CC, Glielmi C, Ream J, Doshi A, Campbell N, Zhang HC, et al. Simultaneous Multislice Accelerated Free-Breathing Diffusion-Weighted Imaging of the Liver at 3T. Abdom Imaging. 2015;40(7):2323-30.Google Scholar
  14. 14.
    Xu J, Moeller S, Auerbach EJ, Strupp J, Smith SM, Feinberg DA, et al. Evaluation of slice accelerations using multiband echo planar imaging at 3 T. Neuroimage. 2013;83:991-1001.Google Scholar
  15. 15.
    Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, et al. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med. 2010;63(5):1144-53.Google Scholar
  16. 16.
    Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Gunther M, et al. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One. 2010;5(12):e15710.Google Scholar
  17. 17.
    Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TE, Bucholz R, et al. The Human Connectome Project: a data acquisition perspective. Neuroimage. 2012;62(4):2222-31.Google Scholar
  18. 18.
    Auerbach EJ, Xu J, Yacoub E, Moeller S, Ugurbil K. Multiband accelerated spin-echo echo planar imaging with reduced peak RF power using time-shifted RF pulses. Magn Reson Med. 2013;69(5):1261-7.Google Scholar
  19. 19.
    Taron J, Martirosian P, Erb M, Kuestner T, Schwenzer NF, Schmidt H, et al. Simultaneous multislice diffusion-weighted MRI of the liver: Analysis of different breathing schemes in comparison to standard sequences. J Magn Reson Imaging. 2016;44(4):865-79.Google Scholar
  20. 20.
    Taron J, Martirosian P, Kuestner T, Schwenzer NF, Othman A, Weiss J, et al. Scan time reduction in diffusion-weighted imaging of the pancreas using a simultaneous multislice technique with different acceleration factors: How fast can we go? Eur Radiol. 2018;28(4):1504-11.Google Scholar
  21. 21.
    Kenkel D, Barth BK, Piccirelli M, Filli L, Finkenstadt T, Reiner CS, et al. Simultaneous Multislice Diffusion-Weighted Imaging of the Kidney: A Systematic Analysis of Image Quality. Invest Radiol. 2017;52(3):163-69.Google Scholar
  22. 22.
    Koh DM, Scurr E, Collins D, Kanber B, Norman A, Leach MO, et al. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR American journal of roentgenology. 2007;188(4):1001-8.Google Scholar
  23. 23.
    Low RN, Gurney J. Diffusion-weighted MRI (DWI) in the oncology patient: value of breathhold DWI compared to unenhanced and gadolinium-enhanced MRI. Journal of magnetic resonance imaging : JMRI. 2007;25(4):848-58.Google Scholar
  24. 24.
    Bruegel M, Holzapfel K, Gaa J, Woertler K, Waldt S, Kiefer B, et al. Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. European radiology. 2008;18(3):477-85.Google Scholar
  25. 25.
    Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102-25.Google Scholar
  26. 26.
    Papanikolaou N, Gourtsoyianni S, Yarmenitis S, Maris T, Gourtsoyiannis N. Comparison between two-point and four-point methods for quantification of apparent diffusion coefficient of normal liver parenchyma and focal lesions. Value of normalization with spleen. Eur J Radiol. 2010;73(2):305-9.Google Scholar
  27. 27.
    Song JS, Hwang SB, Chung GH, Jin GY. Intra-Individual, Inter-Vendor Comparison of Diffusion-Weighted MR Imaging of Upper Abdominal Organs at 3.0 Tesla with an Emphasis on the Value of Normalization with the Spleen. Korean J Radiol. 2016;17(2):209-17.Google Scholar
  28. 28.
    Hinkle De WWJSG. Applied statistics for the behavioral sciences, 5th ed 2003.Google Scholar
  29. 29.
    Filli L, Piccirelli M, Kenkel D, Guggenberger R, Andreisek G, Beck T, et al. Simultaneous Multislice Echo Planar Imaging With Blipped Controlled Aliasing in Parallel Imaging Results in Higher Acceleration: A Promising Technique for Accelerated Diffusion Tensor Imaging of Skeletal Muscle. Invest Radiol. 2015;50(7):456-63.Google Scholar
  30. 30.
    Taron J, Martirosian P, Schwenzer NF, Erb M, Kuestner T, Weiss J, et al. Scan time minimization in hepatic diffusion-weighted imaging: evaluation of the simultaneous multislice acceleration technique with different acceleration factors and gradient preparation schemes. MAGMA. 2016;29(5):739-49.Google Scholar
  31. 31.
    Braithwaite AC, Dale BM, Boll DT, Merkle EM. Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology. 2009;250(2):459-65.Google Scholar
  32. 32.
    Koh DM, Blackledge M, Collins DJ, Padhani AR, Wallace T, Wilton B, et al. Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two-centre phase I clinical trial. Eur Radiol. 2009;19(11):2728-38.Google Scholar
  33. 33.
    Corona-Villalobos CP, Pan L, Halappa VG, Bonekamp S, Lorenz CH, Eng J, et al. Agreement and reproducibility of apparent diffusion coefficient measurements of dual-b-value and multi-b-value diffusion-weighted magnetic resonance imaging at 1.5 Tesla in phantom and in soft tissues of the abdomen. J Comput Assist Tomogr. 2013;37(1):46-51.Google Scholar
  34. 34.
    Miquel ME, Scott AD, Macdougall ND, Boubertakh R, Bharwani N, Rockall AG. In vitro and in vivo repeatability of abdominal diffusion-weighted MRI. Br J Radiol. 2012;85(1019):1507-12.Google Scholar
  35. 35.
    Song JS, Kwak HS, Byon JH, Jin GY. Diffusion-weighted MR imaging of upper abdominal organs at different time points: Apparent diffusion coefficient normalization using a reference organ. Journal of magnetic resonance imaging : JMRI. 2017;45(5):1494-501.Google Scholar
  36. 36.
    Do RK, Chandarana H, Felker E, Hajdu CH, Babb JS, Kim D, et al. Diagnosis of liver fibrosis and cirrhosis with diffusion-weighted imaging: value of normalized apparent diffusion coefficient using the spleen as reference organ. AJR Am J Roentgenol. 2010;195(3):671-6.Google Scholar
  37. 37.
    Kim T, Murakami T, Takahashi S, Hori M, Tsuda K, Nakamura H. Diffusion-weighted single-shot echoplanar MR imaging for liver disease. AJR Am J Roentgenol. 1999;173(2):393-8.Google Scholar
  38. 38.
    Taron J, Weiß J, Martirosian P, Seith F, Stemmer A, Bamberg F, et al. Clinical Robustness of Accelerated and Optimized Abdominal Diffusion-Weighted Imaging. Investigative Radiology. 2017;52(10):590-95.Google Scholar
  39. 39.
    Kinner S, Umutlu L, Blex S, Maderwald S, Antoch G, Ertle J, et al. Diffusion weighted MR imaging in patients with HCC and liver cirrhosis after administration of different gadolinium contrast agents: is it still reliable? Eur J Radiol. 2012;81(4):e625-8.Google Scholar
  40. 40.
    Colagrande S, Mazzoni LN, Mazzoni E, Pradella S. Effects of gadoxetic acid on quantitative diffusion-weighted imaging of the liver. J Magn Reson Imaging. 2013;38(2):365-70.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of RadiologyChonbuk National University Medical School and HospitalJeonjuKorea
  2. 2.Research Institute of Clinical Medicine of Chonbuk National UniversityJeonjuKorea
  3. 3.Biomedical Research Institute of Chonbuk National University HospitalJeonjuKorea
  4. 4.Siemens Healthineers LtdSeoulKorea

Personalised recommendations