Quantitative contrast-enhanced ultrasound of renal perfusion: a technology for the assessment of early diabetic nephropathy in cynomolgus macaques with type 2 diabetes mellitus

  • Jieli Luo
  • Jianshe Chen
  • Yang Sun
  • Hang Zhou
  • Kailun Xu
  • Fengbo Huang
  • Pintong HuangEmail author
Kidneys, Ureters, Bladder, Retroperitoneum



The aim of this study was to investigate the effectiveness of contrast-enhanced ultrasound (CEUS) in predicting early nephropathy in cynomolgus macaques with spontaneous type 2 diabetes mellitus (T2DM).


Six cynomolgus macaques with spontaneous T2DM and six normal cynomolgus macaques (Group 1) were included in this study. The time–intensity curve was used to obtain parameters such as peak values, red blood volume (RBV), red blood flow (RBF), time to peak (TTP), and mean transit time (MTT). Biopsy renal tissue samples were assessed histopathologically. Six cynomolgus macaques with spontaneous T2DM were subgrouped into T2DM without nephropathy group (Group 2) and T2DM with nephropathy group (Group 3) based on histopathological findings.


Peak value had the largest area under the curve comparing with RBF, RBV, TTP, MTT. The sensitivity and specificity of peak value with cut-off value of 38.65 dB for the diagnosis of DN were 98.3% and 83%, respectively. Peak value, RBV, and RBF in Group 3 was significantly decreased compared with Group 1 and Group 2 (P = 0.000, x2 = 23.99; P = 0.003, x2 = 9.14; P = 0.02, x2 = 5.14).


The perfusion parameter of peak value in CEUS might be useful in predicting early diabetic nephropathy in spontaneous T2DM cynomolgus macaques.


Diabetes Nephropathy Cut-off value Histopathology Glomerular filtration rate 



Dr. Pintong Huang is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Author contributions

PH designed this study. JL, JC, YS, KX, and FH acquired the data. JL, JC, and YS interpreted the data. JL wrote the main manuscript text. HZ edited the manuscript. All authors reviewed the manuscript. All authors have approved of the final version of the manuscript.


This study was funded by the National Natural Science Foundation of China (Grant Nos. 81420108018, 81527803) of China.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no duality of interest associated with this manuscript.


  1. 1.
    Rutten G, Alzaid A (2018) Person-centred type 2 diabetes care: time for a paradigm shift. Lancet Diabetes Endocrinol 6 (4):264-266. CrossRefGoogle Scholar
  2. 2.
    Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR, Group CPC (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 377 (7):644-657.
  3. 3.
    Hanssen NMJ, Scheijen J, Jorsal A, Parving HH, Tarnow L, Rossing P, Stehouwer CDA, Schalkwijk CG (2017) Higher Plasma Methylglyoxal Levels Are Associated With Incident Cardiovascular Disease in Individuals With Type 1 Diabetes: A 12-Year Follow-up Study. Diabetes 66 (8):2278-2283. CrossRefGoogle Scholar
  4. 4.
    Lipska KJ, Hirsch IB, Riddle MC (2017) Human Insulin for Type 2 Diabetes: An Effective, Less-Expensive Option. JAMA 318 (1):23-24. Google Scholar
  5. 5.
    Tanada Y, Okuda J, Kato T, Minamino-Muta E, Murata I, Soga T, Shioi T, Kimura T (2017) The metabolic profile of a rat model of chronic kidney disease. PeerJ 5:e3352. CrossRefGoogle Scholar
  6. 6.
    Zhong C, Chen Z, Luo X, Wang C, Jiang H, Shao J, Guan M, Huang L, Huang X, Wang J (2018) Corrigendum to "Barhl1 is required for the differentiation of inner ear hair cell-like cells from mouse embryonic stem cells" [Int. J. Biochem. Cell Biol. 96 (2018) 79-89]. Int J Biochem Cell Biol 97:128-129. CrossRefGoogle Scholar
  7. 7.
    Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators (2000). Lancet 355 (9200):253-259Google Scholar
  8. 8.
    Bodzek P, Olejek A, Adamusiak-Kutrowska I, Zamlynski J, Wolnicka B (2002) [Evaluation of the health care of diabetic pregnant women and their newborns in 1992-2001 in the Obstetrics and Gynaecology Department in Bytom]. Wiad Lek 55 Suppl 1:43-49Google Scholar
  9. 9.
    Moriya T, Tanaka S, Sone H, Ishibashi S, Matsunaga S, Ohashi Y, Akanuma Y, Haneda M, Katayama S (2017) Patients with type 2 diabetes having higher glomerular filtration rate showed rapid renal function decline followed by impaired glomerular filtration rate: Japan Diabetes Complications Study. J Diabetes Complications 31 (2):473-478. CrossRefGoogle Scholar
  10. 10.
    Derlin T, Gueler F, Brasen JH, Schmitz J, Hartung D, Herrmann TR, Ross TL, Wacker F, Wester HJ, Hiss M, Haller H, Bengel FM, Hueper K (2017) Integrating MRI and Chemokine Receptor CXCR4-Targeted PET for Detection of Leukocyte Infiltration in Complicated Urinary Tract Infections After Kidney Transplantation. J Nucl Med 58 (11):1831-1837. CrossRefGoogle Scholar
  11. 11.
    Berzigotti A, Nicolau C, Bellot P, Abraldes JG, Gilabert R, Garcia-Pagan JC, Bosch J (2011) Evaluation of regional hepatic perfusion (RHP) by contrast-enhanced ultrasound in patients with cirrhosis. J Hepatol 55 (2):307-314. CrossRefGoogle Scholar
  12. 12.
    Panduru NM, Forsblom C, Saraheimo M, Thorn LM, Gordin D, Elonen N, Harjusalo V, Bierhaus A, Humpert PM, Groop PH, FinnDiane Study G (2017) Urinary liver-type fatty acid binding protein is an independent predictor of stroke and mortality in individuals with type 1 diabetes. Diabetologia 60 (9):1782-1790.
  13. 13.
    Marso SP, McGuire DK, Zinman B, Poulter NR, Emerson SS, Pieber TR, Pratley RE, Haahr PM, Lange M, Brown-Frandsen K, Moses A, Skibsted S, Kvist K, Buse JB, Group DS (2017) Efficacy and Safety of Degludec versus Glargine in Type 2 Diabetes. N Engl J Med 377 (8):723-732.
  14. 14.
    Malik S, Suchal K, Khan SI, Bhatia J, Kishore K, Dinda AK, Arya DS (2017) Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-kappaB-TNF-alpha and TGF-beta1-MAPK-fibronectin pathways. Am J Physiol Renal Physiol 313 (2):F414-F422. CrossRefGoogle Scholar
  15. 15.
    Wen CP, Chang CH, Tsai MK, Lee JH, Lu PJ, Tsai SP, Wen C, Chen CH, Kao CW, Tsao CK, Wu X (2017) Diabetes with early kidney involvement may shorten life expectancy by 16 years. Kidney Int 92 (2):388-396. CrossRefGoogle Scholar
  16. 16.
    Wekerle T, Segev D, Lechler R, Oberbauer R (2017) Strategies for long-term preservation of kidney graft function. Lancet 389 (10084):2152-2162. CrossRefGoogle Scholar
  17. 17.
    Thrasher J (2017) Pharmacologic Management of Type 2 Diabetes Mellitus: Available Therapies. Am J Cardiol 120 (1S):S4-S16. CrossRefGoogle Scholar
  18. 18.
    Vanhove T, Hasan M, Annaert P, Oswald S, Kuypers DRJ (2017) Pretransplant 4beta-hydroxycholesterol does not predict tacrolimus exposure or dose requirements during the first days after kidney transplantation. Br J Clin Pharmacol 83 (11):2406-2415. CrossRefGoogle Scholar
  19. 19.
    den Braver NR, de Vet E, Duijzer G, Ter Beek J, Jansen SC, Hiddink GJ, Feskens EJM, Haveman-Nies A (2017) Determinants of lifestyle behavior change to prevent type 2 diabetes in high-risk individuals. Int J Behav Nutr Phys Act 14 (1):78. CrossRefGoogle Scholar
  20. 20.
    Chen CB, Zhao L, Han M, Wang XP, Zhou J, Yuan XP, Wang CX (2017) Renal Transplantation Using Stone-bearing Deceased Donor Kidneys-Experience of a Transplant Center in China. Urology 107:251-256. CrossRefGoogle Scholar
  21. 21.
    Carney EF (2017) Transplantation: Survival benefit of accepting a diabetic deceased donor kidney. Nat Rev Nephrol 13 (8):444. Google Scholar
  22. 22.
    Budde K, Zeier M, Witzke O, Arns W, Lehner F, Guba M, Jacobi J, Kliem V, Reinke P, Hauser IA, Vogt B, Stahl R, Rath T, Duerr M, Paulus EM, May C, Porstner M, Sommerer C, Group HS (2017) Everolimus with cyclosporine withdrawal or low-exposure cyclosporine in kidney transplantation from Month 3: a multicentre, randomized trial. Nephrol Dial Transplant 32 (6):1060-1070.
  23. 23.
    Allen PJ, Chadban SJ, Craig JC, Lim WH, Allen RDM, Clayton PA, Teixeira-Pinto A, Wong G (2017) Recurrent glomerulonephritis after kidney transplantation: risk factors and allograft outcomes. Kidney Int 92 (2):461-469. CrossRefGoogle Scholar
  24. 24.
    Sabatino A, Regolisti G, Bozzoli L, Fani F, Antoniotti R, Maggiore U, Fiaccadori E (2017) Reliability of bedside ultrasound for measurement of quadriceps muscle thickness in critically ill patients with acute kidney injury. Clin Nutr 36 (6):1710-1715. CrossRefGoogle Scholar
  25. 25.
    Nishimura M, Kato Y, Tanaka T, Taki H, Tone A, Yamada K, Suzuki S, Saito M, Ando Y, Hoshiyama Y (2017) Effect of Home Blood Pressure on Inducing Remission/Regression of Microalbuminuria in Patients With Type 2 Diabetes Mellitus. Am J Hypertens 30 (8):830-839. CrossRefGoogle Scholar
  26. 26.
    Katahira M, Hanakita M, Ito T, Suzuki M (2013) The ratio of glycosylated albumin to glycosylated hemoglobin differs between type 2 diabetic patients with low normoalbuminuria and those with high normoalbuminuria or microalbuminuria. Diabetes Care 36 (12):e207-208. CrossRefGoogle Scholar
  27. 27.
    Lindhardt M, Persson F, Zurbig P, Stalmach A, Mischak H, de Zeeuw D, Lambers Heerspink H, Klein R, Orchard T, Porta M, Fuller J, Bilous R, Chaturvedi N, Parving HH, Rossing P (2017) Urinary proteomics predict onset of microalbuminuria in normoalbuminuric type 2 diabetic patients, a sub-study of the DIRECT-Protect 2 study. Nephrol Dial Transplant 32 (11):1866-1873. Google Scholar
  28. 28.
    Stoperka F, Karger C, Beige J (2016) Limited Accuracy of Colour Doppler Ultrasound Dynamic Tissue Perfusion Measurement in Diabetic Adults. PLoS One 11 (12):e0168905. CrossRefGoogle Scholar
  29. 29.
    Al-Rubeaan K, Siddiqui K, Al-Ghonaim MA, Youssef AM, Al-Sharqawi AH, AlNaqeb D (2017) Assessment of the diagnostic value of different biomarkers in relation to various stages of diabetic nephropathy in type 2 diabetic patients. Sci Rep 7 (1):2684. CrossRefGoogle Scholar
  30. 30.
    Avgustin N, Rotar Z, Pajek J, Kovac D, Osredkar J, Lindic J (2017) The predictive value of urinary vascular endothelial growth factor (VEGF) on worsening kidney function in proteinuric chronic kidney disease. Clin Nephrol 88 (13):10-13. CrossRefGoogle Scholar
  31. 31.
    Siracusano S, Bertolotto M, Ciciliato S, Valentino M, Liguori G, Visalli F (2011) The current role of contrast-enhanced ultrasound (CEUS) imaging in the evaluation of renal pathology. World J Urol 29 (5):633-638. CrossRefGoogle Scholar
  32. 32.
    Lee G, Jeon S, Lee SK, Cheon B, Moon S, Park JG, Cho KO, Choi J (2017) Quantitative evaluation of renal parenchymal perfusion using contrast-enhanced ultrasonography in renal ischemia-reperfusion injury in dogs. J Vet Sci 18 (4):507-514. CrossRefGoogle Scholar
  33. 33.
    Dumont V, Tolvanen TA, Kuusela S, Wang H, Nyman TA, Lindfors S, Tienari J, Nisen H, Suetsugu S, Plomann M, Kawachi H, Lehtonen S (2017) PACSIN2 accelerates nephrin trafficking and is up-regulated in diabetic kidney disease. FASEB J 31 (9):3978-3990. CrossRefGoogle Scholar
  34. 34.
    Dey A, Hao S, Wosiski-Kuhn M, Stranahan AM (2017) Glucocorticoid-mediated activation of GSK3beta promotes tau phosphorylation and impairs memory in type 2 diabetes. Neurobiol Aging 57:75-83. CrossRefGoogle Scholar
  35. 35.
    Sidhu PS, Cantisani V, Deganello A, Dietrich CF, Duran C, Franke D, Harkanyi Z, Kosiak W, Miele V, Ntoulia A, Piskunowicz M, Sellars M, Gilja OH (2017) Authors' Reply to Letter: Role of Contrast-Enhanced Ultrasound (CEUS) in Paediatric Practice: An EFSUMB Position Statement. Ultraschall Med 38 (4):447-448. CrossRefGoogle Scholar
  36. 36.
    Huang L, Chen K, Chen FC, Shen HY, Ye JC, Cai ZP, Lin X (2017) Intraoperative contrast-enhanced ultrasonography for microcirculatory evaluation in rhesus monkey with spinal cord injury. Oncotarget 8 (25):40756-40764. Google Scholar
  37. 37.
    Zhang H, Nair V, Saha J, Atkins KB, Hodgin JB, Saunders TL, Myers MG, Jr., Werner T, Kretzler M, Brosius FC (2017) Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney Int 92 (4):909-921. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of UltrasoundThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
  2. 2.Department of PathologyThe Second Affiliated Hospital of Zhejiang University School of MedicineZhejiangChina

Personalised recommendations