Abdominal Radiology

, Volume 43, Issue 11, pp 3082–3100 | Cite as

Magnetic resonance imaging (MRI) of the renal sinus

  • Satheesh Krishna
  • Nicola SchiedaEmail author
  • Trevor A. Flood
  • Alampady Krishna Shanbhogue
  • Subramaniyan Ramanathan
  • Evan Siegelman
Pictorial essay


This article presents methods to improve MR imaging approach of disorders of the renal sinus which are relatively uncommon and can be technically challenging. Multi-planar Single-shot T2-weighted (T2W) Fast Spin-Echo sequences are recommended to optimally assess anatomic relations of disease. Multi-planar 3D-T1W Gradient Recalled Echo imaging before and after Gadolinium administration depicts the presence and type of enhancement and relation to arterial, venous, and collecting system structures. To improve urographic phase MRI, concentrated Gadolinium in the collecting systems should be diluted. Diffusion-Weighted Imaging (DWI) should be performed before Gadolinium administration to minimize T2* effects. Renal sinus cysts are common but can occasionally be confused for dilated collecting system or calyceal diverticula, with the latter communicating with the collecting system and filling on urographic phase imaging. Vascular lesions (e.g., aneurysm, fistulas) may mimic cystic (or solid) lesions on non-enhanced MRI but can be suspected by noting similar signal intensity to the blood pool and diagnosis can be confirmed with MR angiogram/venogram. Multilocular cystic nephroma commonly extends to the renal sinus, however, to date are indistinguishable from cystic renal cell carcinoma (RCC). Solid hilar tumors are most commonly RCC and urothelial cell carcinoma (UCC). Hilar RCC are heterogeneous, hypervascular with epicenter in the renal cortex compared to UCC which are centered in the collecting system, homogeneously hypovascular, and show profound restricted diffusion. Diagnosis of renal sinus invasion in RCC is critically important as it is the most common imaging cause of pre-operative under-staging of disease. Fat is a normal component of the renal sinus; however, amount of sinus fat correlates with cardiovascular disease and is also seen in lipomatosis. Fat-containing hilar lesions include lipomas, angiomyolipomas, and less commonly other tumors which engulf sinus fat. Mesenchymal hilar tumors are rare. MR imaging diagnosis is generally not possible, although anatomic relations should be described to guide diagnosis by percutaneous biopsy or surgery.


Renal sinus Magnetic resonance imaging Urothelial cell carcinoma Renal cell carcinoma Staging 


Compliance with ethical standards


No funding was received for this manuscript.

Conflict of interest

None of the authors declare any conflicts of interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.


  1. 1.
    Pallwein-Prettner L, Flory D, Rotter CR, et al. (2011) Assessment and characterisation of common renal masses with CT and MRI. Insights Imaging 2(5):543–556CrossRefGoogle Scholar
  2. 2.
    Klatte T, Ficarra V, Gratzke C, et al. (2015) A literature review of renal surgical anatomy and surgical strategies for partial nephrectomy. Eur Urol 68(6):980–992CrossRefGoogle Scholar
  3. 3.
    Ramamurthy NK, Moosavi B, McInnes MD, Flood TA, Schieda N (2015) Multiparametric MRI of solid renal masses: pearls and pitfalls. Clin Radiol 70(3):304–316CrossRefGoogle Scholar
  4. 4.
    Chung AD, Schieda N, Shanbhogue AK, et al. (2016) MRI evaluation of the urothelial tract: pitfalls and solutions. AJR Am J Roentgenol 207(6):W108–W116CrossRefGoogle Scholar
  5. 5.
    Chavhan GB, Babyn PS, Jankharia BG, Cheng HL, Shroff MM (2008) Steady-state MR imaging sequences: physics, classification, and clinical applications. Radiographics 28(4):1147–1160CrossRefGoogle Scholar
  6. 6.
    Kalb B, Sharma P, Salman K, et al. (2010) Acute abdominal pain: is there a potential role for MRI in the setting of the emergency department in a patient with renal calculi? J Magn Reson Imaging 32(5):1012–1023CrossRefGoogle Scholar
  7. 7.
    Schieda N, Isupov I, Chung A, Coffey N, Avruch L (2017) Practical applications of balanced steady-state free-precession (bSSFP) imaging in the abdomen and pelvis. J Magn Reson Imaging 45(1):11–20CrossRefGoogle Scholar
  8. 8.
    Leyendecker JR, Barnes CE, Zagoria RJ (2008) MR urography: techniques and clinical applications. Radiographics 28(1):23–46 (discussion 46–27)CrossRefGoogle Scholar
  9. 9.
    O’Connor OJ, McLaughlin P, Maher MM (2010) MR Urography. AJR Am J Roentgenol 195(3):W201–W206CrossRefGoogle Scholar
  10. 10.
    Dym RJ, Chernyak V, Rozenblit AM (2013) MR imaging of renal collecting system with gadoxetate disodium: feasibility for MR urography. J Magn Reson Imaging 38(4):816–823CrossRefGoogle Scholar
  11. 11.
    Rha SE, Byun JY, Jung SE, et al. (2004) The renal sinus: pathologic spectrum and multimodality imaging approach. Radiographics 24(Suppl 1):S117–S131CrossRefGoogle Scholar
  12. 12.
    Chughtai HL, Morgan TM, Rocco M, et al. (2010) Renal sinus fat and poor blood pressure control in middle-aged and elderly individuals at risk for cardiovascular events. Hypertension 56(5):901–906CrossRefGoogle Scholar
  13. 13.
    Foster MC, Hwang SJ, Porter SA, et al. (2011) Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension 58(5):784–790CrossRefGoogle Scholar
  14. 14.
    Krievina G, Tretjakovs P, Skuja I, et al. (2016) Ectopic adipose tissue storage in the left and the right renal sinus is asymmetric and associated with serum kidney injury molecule-1 and fibroblast growth factor-21 levels increase. EBioMedicine 13:274–283CrossRefGoogle Scholar
  15. 15.
    Irazabal MV, Eirin A (2016) Role of renal sinus adipose tissue in obesity-induced renal injury. EBioMedicine 13:21–22CrossRefGoogle Scholar
  16. 16.
    Graffy PM, Pickhardt PJ (1062) Quantification of hepatic and visceral fat by CT and MR imaging: relevance to the obesity epidemic, metabolic syndrome and NAFLD. Br J Radiol 2016(89):20151024Google Scholar
  17. 17.
    Reeder SB, Hu HH, Sirlin CB (2012) Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging 36(5):1011–1014CrossRefGoogle Scholar
  18. 18.
    Karasick S, Wechsler RJ (2000) Case 23: replacement lipomatosis of the kidney. Radiology 215(3):754–756CrossRefGoogle Scholar
  19. 19.
    Ellingson JJ, Coakley FV, Joe BN, et al. (2008) Computed tomographic distinction of perirenal liposarcoma from exophytic angiomyolipoma: a feature analysis study. J Comput Assist Tomogr 32(4):548–552CrossRefGoogle Scholar
  20. 20.
    Curry NS, Schabel SI, Garvin AJ, Fish G (1990) Intratumoral fat in a renal oncocytoma mimicking angiomyolipoma. AJR Am J Roentgenol 154(2):307–308CrossRefGoogle Scholar
  21. 21.
    Prando A (1991) Intratumoral fat in a renal cell carcinoma. AJR Am J Roentgenol 156(4):871CrossRefGoogle Scholar
  22. 22.
    Dani R, Gandhi V, Prajapati H, et al. (2005) Case report: Xanthogranulomatous pyelonephritis—an unusual variety. Indian J Radiol Imaging 15(2):195–198CrossRefGoogle Scholar
  23. 23.
    Verswijvel G, Oyen R, Van Poppel H, Roskams T (2000) Xanthogranulomatous pyelonephritis: MRI findings in the diffuse and the focal type. Eur Radiol 10(4):586–589CrossRefGoogle Scholar
  24. 24.
    Amis ES Jr, Cronan JJ (1988) The renal sinus: an imaging review and proposed nomenclature for sinus cysts. J Urol 139(6):1151–1159CrossRefGoogle Scholar
  25. 25.
    Tarzamni MK, Sobhani N, Nezami N, Ghiasi F (2008) Bilateral parapelvic cysts that mimic hydronephrosis in two imaging modalities: a case report. Cases J 1(1):161CrossRefGoogle Scholar
  26. 26.
    Ma TL, Neild GH (2013) Parapelvic cyst misdiagnosed as hydronephrosis. Clin Kidney J 6(2):238–239CrossRefGoogle Scholar
  27. 27.
    El-Nahas AR, Abou El-Ghar ME, Refae HF, Gad HM, El-Diasty TA (2007) Magnetic resonance imaging in the evaluation of pelvi-ureteric junction obstruction: an all-in-one approach. BJU Int 99(3):641–645CrossRefGoogle Scholar
  28. 28.
    Stunell H, McNeill G, Browne RF, Grainger R, Torreggiani WC (2010) The imaging appearances of calyceal diverticula complicated by uroliathasis. Br J Radiol 83(994):888–894CrossRefGoogle Scholar
  29. 29.
    Lane BR, Campbell SC, Remer EM, et al. (2008) Adult cystic nephroma and mixed epithelial and stromal tumor of the kidney: clinical, radiographic, and pathologic characteristics. Urology 71(6):1142–1148CrossRefGoogle Scholar
  30. 30.
    Li Y, Pawel BR, Hill DA, Epstein JI, Argani P (2017) Pediatric cystic nephroma is morphologically, immunohistochemically, and genetically distinct from adult cystic nephroma. Am J Surg Pathol 41(4):472–481CrossRefGoogle Scholar
  31. 31.
    Wood CG, Stromberg LJ, Harmath CB, et al. (2015) CT and MR imaging for evaluation of cystic renal lesions and diseases. Radiographics 35(1):125–141CrossRefGoogle Scholar
  32. 32.
    Kettritz U, Semelka RC, Siegelman ES, Shoenut JP, Mitchell DG (1996) Multilocular cystic nephroma: MR imaging appearance with current techniques, including gadolinium enhancement. J Magn Reson Imaging 6(1):145–148CrossRefGoogle Scholar
  33. 33.
    Lebed B, Jani SD, Kutikov A, Iffrig K, Uzzo RG (2010) Renal masses herniating into the hilum: technical considerations of the “ball-valve phenomenon” during nephron-sparing surgery. Urology 75(3):707–710CrossRefGoogle Scholar
  34. 34.
    Balyemez F, Aslan A, Inan I, et al. (2017) Diffusion-weighted magnetic resonance imaging in cystic renal masses. Can Urol Assoc J 11(1–2):E8–E14CrossRefGoogle Scholar
  35. 35.
    Ozturk M, Ekinci A, Elbir SF, et al. (2017) Usefulness of apparent diffusion coefficient of diffusion-weighted imaging for differential diagnosis of primary solid and cystic renal masses. Polish J Radiol 82:209–215CrossRefGoogle Scholar
  36. 36.
    Silver IM, Boag AH, Soboleski DA (2008) Best cases from the AFIP: Multilocular cystic renal tumor: cystic nephroma. Radiographics 28(4):1221–1225 (discussion 1225–1226)CrossRefGoogle Scholar
  37. 37.
    Muglia VF, Westphalen AC (2014) Bosniak classification for complex renal cysts: history and critical analysis. Radiol Brasileira 47(6):368–373CrossRefGoogle Scholar
  38. 38.
    Silver PR, Budin JA (1990) Unusual manifestations of renal artery aneurysms. Urol Radiol 12(2):80–83CrossRefGoogle Scholar
  39. 39.
    Vitale V, Di Serafino M, Vallone G (2013) Renal artery aneurysm mimicking a solid parenchymal lesion. J Ultrasound 16(3):131–134CrossRefGoogle Scholar
  40. 40.
    Wong C, Leveillee RJ, Yrizarry JM, Kirby K (2002) Arteriovenous malformation mimicking a renal-cell carcinoma. J Endourol 16(9):685–686CrossRefGoogle Scholar
  41. 41.
    Vasavada SP, Manion S, Flanigan RC, Novick AC (1995) Renal arteriovenous malformations masquerading as renal cell carcinoma. Urology 46(5):716–721CrossRefGoogle Scholar
  42. 42.
    Khosa F, Krinsky G, Macari M, Yucel EK, Berland LL (2013) Managing incidental findings on abdominal and pelvic CT and MRI, Part 2: white paper of the ACR Incidental Findings Committee II on vascular findings. J Am Coll Radiol 10(10):789–794CrossRefGoogle Scholar
  43. 43.
    Willoteaux S, Faivre-Pierret M, Moranne O, et al. (2006) Fibromuscular dysplasia of the main renal arteries: comparison of contrast-enhanced MR angiography with digital subtraction angiography. Radiology 241(3):922–929CrossRefGoogle Scholar
  44. 44.
    Ozaki K, Miyayama S, Ushiogi Y, Matsui O (2009) Renal involvement of polyarteritis nodosa: CT and MR findings. Abdom Imaging 34(2):265–270CrossRefGoogle Scholar
  45. 45.
    Norwood MGA, Salem MK, Markose G, Naylor AR (2009) Renal artery aneurysms: careful investigation is critical. EJVES Extra 18(3):38–40CrossRefGoogle Scholar
  46. 46.
    Katabathina VS, Vikram R, Nagar AM, et al. (2010) Mesenchymal neoplasms of the kidney in adults: imaging spectrum with radiologic-pathologic correlation. Radiographics 30(6):1525–1540CrossRefGoogle Scholar
  47. 47.
    Takaoka E, Sekido N, Naoi M, et al. (2008) Cavernous hemangioma mimicking a cystic renal cell carcinoma. Int Journal Clin Oncol 13(2):166–168CrossRefGoogle Scholar
  48. 48.
    Decastro GJ, McKiernan JM (2008) Epidemiology, clinical staging, and presentation of renal cell carcinoma. Urol Clin N Am 35(4):581–592CrossRefGoogle Scholar
  49. 49.
    Munoz JJ, Ellison LM (2000) Upper tract urothelial neoplasms: incidence and survival during the last 2 decades. J Urol 164(5):1523–1525CrossRefGoogle Scholar
  50. 50.
    Bonsib SM, Gibson D, Mhoon M, Greene GF (2000) Renal sinus involvement in renal cell carcinomas. Am J Surg Pathol 24(3):451–458CrossRefGoogle Scholar
  51. 51.
    Izumi K, Saito K, Nakayama T, et al. (2017) Contact with renal sinus is a significant risk factor for metastasis in pT1 clear cell renal cell carcinoma. Eur Urol 16(3):e1124–e1126CrossRefGoogle Scholar
  52. 52.
    Hall MC, Womack S, Sagalowsky AI, et al. (1998) Prognostic factors, recurrence, and survival in transitional cell carcinoma of the upper urinary tract: a 30-year experience in 252 patients. Urology 52(4):594–601CrossRefGoogle Scholar
  53. 53.
    Latchamsetty KC, Porter CR (2006) Treatment of upper tract urothelial carcinoma: a review of surgical and adjuvant therapy. Rev Urol 8(2):61–70PubMedPubMedCentralGoogle Scholar
  54. 54.
    Jonasch E, Gao J, Rathmell WK (2014) Renal cell carcinoma. BMJ 349:g4797CrossRefGoogle Scholar
  55. 55.
    Raza SA, Sohaib SA, Sahdev A, et al. (2012) Centrally infiltrating renal masses on CT: differentiating intrarenal transitional cell carcinoma from centrally located renal cell carcinoma. AJR Am J Roentgenol 198(4):846–853CrossRefGoogle Scholar
  56. 56.
    Just N (2014) Improving tumour heterogeneity MRI assessment with histograms. Br J Cancer 111(12):2205–2213CrossRefGoogle Scholar
  57. 57.
    Xing W, He X, Kassir MA, et al. (2013) Evaluating hemorrhage in renal cell carcinoma using susceptibility weighted imaging. PLoS ONE 8(2):e57691CrossRefGoogle Scholar
  58. 58.
    Murray CA, Quon M, McInnes MD, et al. (2016) Evaluation of T1-weighted MRI to detect intratumoral hemorrhage within papillary renal cell carcinoma as a feature differentiating from angiomyolipoma without visible fat. AJR Am J Roentgenol 207(3):585–591CrossRefGoogle Scholar
  59. 59.
    Moosavi B, Shabana WM, El-Khodary M, et al. (2016) Intracellular lipid in clear cell renal cell carcinoma tumor thrombus and metastases detected by chemical shift (in and opposed phase) MRI: radiologic-pathologic correlation. Acta Radiol 57(2):241–248CrossRefGoogle Scholar
  60. 60.
    Schieda N, van der Pol CB, Moosavi B, et al. (2015) Intracellular lipid in papillary renal cell carcinoma (pRCC): T2 weighted (T2W) MRI and pathologic correlation. Eur Radiol 25(7):2134–2142CrossRefGoogle Scholar
  61. 61.
    Jhaveri KS, Elmi A, Hosseini-Nik H, et al. (2015) Predictive value of chemical-shift MRI in distinguishing clear cell renal cell carcinoma from non-clear cell renal cell carcinoma and minimal-fat angiomyolipoma. AJR Am J Roentgenol 205(1):W79–W86CrossRefGoogle Scholar
  62. 62.
    Silverman SG, Leyendecker JR, Amis ES Jr (2009) What is the current role of CT urography and MR urography in the evaluation of the urinary tract? Radiology 250(2):309–323CrossRefGoogle Scholar
  63. 63.
    Wehrli NE, Kim MJ, Matza BW, et al. (2013) Utility of MRI features in differentiation of central renal cell carcinoma and renal pelvic urothelial carcinoma. AJR Am J Roentgenol 201(6):1260–1267CrossRefGoogle Scholar
  64. 64.
    Pickhardt PJ, Siegel CL, McLarney JK (2001) Collecting duct carcinoma of the kidney: are imaging findings suggestive of the diagnosis? AJR Am J Roentgenol 176(3):627–633CrossRefGoogle Scholar
  65. 65.
    Zhu Q, Wu J, Wang Z, et al. (2013) The MSCT and MRI findings of collecting duct carcinoma. Clin Radiol 68(10):1002–1007CrossRefGoogle Scholar
  66. 66.
    Kalayci OT, Bozdag Z, Sonmezgoz F, Sahin N (2013) Squamous cell carcinoma of the renal pelvis associated with kidney stones: radiologic imaging features with gross and histopathological correlation. J Clin Imaging Sci 3:14CrossRefGoogle Scholar
  67. 67.
    Prasad SR, Humphrey PA, Menias CO, et al. (2005) Neoplasms of the renal medulla: radiologic-pathologic correlation. Radiographics 25(2):369–380CrossRefGoogle Scholar
  68. 68.
    Shim M, Song C, Park S, et al. (2015) Hilar location is an independent prognostic factor for recurrence in T1 renal cell carcinoma after nephrectomy. Ann Surg Oncol 22(1):344–350CrossRefGoogle Scholar
  69. 69.
    Gorin MA, Ball MW, Pierorazio PM, et al. (2013) Outcomes and predictors of clinical T1 to pathological T3a tumor up-staging after robotic partial nephrectomy: a multi-institutional analysis. J Urol 190(5):1907–1911CrossRefGoogle Scholar
  70. 70.
    Maroni P, Moss J (2014) Nephron-sparing surgery. Seminars Interv Radiol 31(1):104–106CrossRefGoogle Scholar
  71. 71.
    Petros FG, Keskin SK, Yu K-J, et al. (2017) Intraoperative conversion from partial to radical nephrectomy: Predictive factors and outcomes. J Clin Oncol 35:483–483CrossRefGoogle Scholar
  72. 72.
    Bonsib SM (2004) The renal sinus is the principal invasive pathway: a prospective study of 100 renal cell carcinomas. Am J Surg Pathol 28(12):1594–1600CrossRefGoogle Scholar
  73. 73.
    Bonsib SM (2005) T2 clear cell renal cell carcinoma is a rare entity: a study of 120 clear cell renal cell carcinomas. J urol 174(4 Pt 1):1199–1202 (discussion 1202)CrossRefGoogle Scholar
  74. 74.
    Trpkov K, Grignon DJ, Bonsib SM, et al. (2013) Handling and staging of renal cell carcinoma: the International Society of Urological Pathology Consensus (ISUP) conference recommendations. Am J Surg Pathol 37(10):1505–1517CrossRefGoogle Scholar
  75. 75.
    Samaratunga H, Gianduzzo T, Delahunt B (2014) The ISUP system of staging, grading and classification of renal cell neoplasia. J Kidney Cancer VHL 1(3):26–39CrossRefGoogle Scholar
  76. 76.
    Zhang Z, Yu C, Velet L, et al. (2016) The difference in prognosis between renal sinus fat and perinephric fat invasion for pT3a renal cell carcinoma: a meta-analysis. PLoS ONE 11(2):e0149420CrossRefGoogle Scholar
  77. 77.
    Bertini R, Roscigno M, Freschi M, et al. (2009) Renal sinus fat invasion in pT3a clear cell renal cell carcinoma affects outcomes of patients without nodal involvement or distant metastases. J Urol 181(5):2027–2032CrossRefGoogle Scholar
  78. 78.
    Vikram R, Beland MD, Blaufox MD, et al. (2016) ACR appropriateness criteria renal cell carcinoma staging. J Am Coll Radiol 13(5):518–525CrossRefGoogle Scholar
  79. 79.
    Hallscheidt PJ, Bock M, Riedasch G, et al. (2004) Diagnostic accuracy of staging renal cell carcinomas using multidetector-row computed tomography and magnetic resonance imaging: a prospective study with histopathologic correlation. J Comput Assist Tomogr 28(3):333–339CrossRefGoogle Scholar
  80. 80.
    Pruthi DK, Chhibba R, Drachenberg DE, McGregor T (2015) Renal nephrometry score and predictors of pathologic upstaging in patients undergoing partial and radical nephrectomies. J Clin Oncol 33:412CrossRefGoogle Scholar
  81. 81.
    Goel MC, Mohammadi Y, Sethi AS, Brown JA, Sundaram CP (2008) Pathologic upstaging after laparoscopic radical nephrectomy. J Endourol 22(10):2257–2261CrossRefGoogle Scholar
  82. 82.
    Mouracade P, Kara O, Dagenais J, et al. (2017) Perioperative morbidity, oncological outcomes and predictors of pT3a upstaging for patients undergoing partial nephrectomy for cT1 tumors. World J Urol 35:1425–1433CrossRefGoogle Scholar
  83. 83.
    Nayak JG, Patel P, Saarela O, et al. (2016) Pathological upstaging of clinical T1 to pathological T3a renal cell carcinoma: a multi-institutional analysis of short-term outcomes. Urology 94:154–160CrossRefGoogle Scholar
  84. 84.
    Parsons RB, Canter D, Kutikov A, Uzzo RG (2012) RENAL nephrometry scoring system: the radiologist’s perspective. AJR Am J Roentgenol 199(3):W355–W359CrossRefGoogle Scholar
  85. 85.
    Okhunov Z, Rais-Bahrami S, George AK, et al. (2011) The comparison of three renal tumor scoring systems: C-Index, P.A.D.U.A., and R.E.N.A.L. nephrometry scores. J Endourol 25(12):1921–1924CrossRefGoogle Scholar
  86. 86.
    Tay MH, Thamboo TP, Wu FM, et al. (2014) High R.E.N.A.L. Nephrometry scores are associated with pathologic upstaging of clinical T1 renal-cell carcinomas in radical nephrectomy specimens: implications for nephron-sparing surgery. J Endourol 28(9):1138–1142CrossRefGoogle Scholar
  87. 87.
    Camacho JC, Kokabi N, Xing M, et al. (2015) R.E.N.A.L. (Radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, and location relative to polar lines) nephrometry score predicts early tumor recurrence and complications after percutaneous ablative therapies for renal cell carcinoma: a 5-year experience. J Vasc Interv Radiol 26(5):686–693CrossRefGoogle Scholar
  88. 88.
    Kobayashi K, Saito T, Kitamura Y, et al. (2013) The RENAL nephrometry score and the PADUA classification for the prediction of perioperative outcomes in patients receiving nephron-sparing surgery: feasible tools to predict intraoperative conversion to nephrectomy. Urol Int 91(3):261–268CrossRefGoogle Scholar
  89. 89.
    Wagner B, Patard JJ, Mejean A, et al. (2009) Prognostic value of renal vein and inferior vena cava involvement in renal cell carcinoma. Eur Urol 55(2):452–459CrossRefGoogle Scholar
  90. 90.
    Robins DJ, Small AC, Amin MB, et al. (2017) MP86-17 THE 2017 American Joint Committee on Cancer Eighth Edition Cancer Staging Manual: Changes in Staging Guidelines for Cancers of the Kidney, Renal Pelvis and Ureter, Bladder, and Urethra. J Urol 197(4):1163CrossRefGoogle Scholar
  91. 91.
    Karlo CA, Di Paolo PL, Donati OF, et al. (2013) Renal cell carcinoma: role of MR imaging in the assessment of muscular venous branch invasion. Radiology 267(2):454–459CrossRefGoogle Scholar
  92. 92.
    Lalwani N, Prasad SR, Vikram R, et al. (2011) Pediatric and adult primary sarcomas of the kidney: a cross-sectional imaging review. Acta Radiol 52(4):448–457CrossRefGoogle Scholar
  93. 93.
    Nikolaidis P, Gabriel H, Khong K, et al. (2008) Computed tomography and magnetic resonance imaging features of lesions of the renal medulla and sinus. Curr Probl Diagn Radiol 37(6):262–278CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Satheesh Krishna
    • 1
  • Nicola Schieda
    • 1
    Email author
  • Trevor A. Flood
    • 2
  • Alampady Krishna Shanbhogue
    • 3
  • Subramaniyan Ramanathan
    • 4
  • Evan Siegelman
    • 5
  1. 1.Department of Medical Imaging, The Ottawa HospitalThe University of OttawaOttawaCanada
  2. 2.Department of Anatomical Pathology, The Ottawa HospitalThe University of OttawaOttawaCanada
  3. 3.Department of RadiologyNYU School of MedicineNew YorkUSA
  4. 4.Department of RadiologyHamad Medical CorporationDohaQatar
  5. 5.Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaUSA

Personalised recommendations